The one-dimensional governing equations for the thermal performance of cryogenic regenerators are developed and simplified by neglecting gas conduction and pressure drop along the matrix. The present formulation includes the effects of matrix conduction and real-gas behavior, which can be quite important in actual situations but were neglected in all previous analyses. The time dependence of the governing equations is eliminated by integration over the compression and expansion periods. Numerical solutions of the resulting time-independent equations are presented for various values of physical parameters and temperature levels. Comparison with the corresponding cases neglecting real-gas and matrix-conduction effects demonstrates the significant nature of these effects for many operating conditions.

You do not currently have access to this content.