Abstract

In the present work, the thermal emission from gases and particle mixture is studied comprehensively. The mixture consists of CO2 and H2O gases along with fly-ash particles, and their spectral radiative properties are obtained from HITEMP-2010 database and Mie theory, respectively. The line-by-line (LBL) method, known for high accuracy, is used to estimate radiative heat transfer from gases and particle mixture. Three distinct cases, i.e., pure absorption/emission, pure scattering, and their combined effects, are investigated. The spectral radiative transfer equation is solved by finite angle method (FAM), and the correctness of the results is ensured by principle of energy conservation. The anisotropic scattering is modeled using the Henyey–Greenstein method. The influence of radiative properties of the participating medium, along with wall and cavity temperatures, on heat transfer and emission spectrum is evaluated. The radiative heat transfer enhances with introduction of the particles in the gaseous mixture. For pure scattering medium, the emission spectrum on each wall differs and also varies from the emission spectrum of the emitting wall. The particle influence grows notably with higher volume fractions in gaseous mixture. While there is a notable contribution of anisotropic scattering in a purely scattering medium, its significance diminishes in an absorbing, emitting, and scattering medium.

References

1.
Kumar
,
P.
,
Chanakya
,
G.
, and
Bartwal
,
N.
,
2021
, “
Investigations of Non-Gray/Gray Radiative Heat Transfer Effect on Natural Convection in Tall Cavities at Low Operating Temperature
,”
Int. Commun. Heat Mass Transfer
,
125
, p.
105288
.10.1016/j.icheatmasstransfer.2021.105288
2.
Leccese
,
G.
,
Bianchi
,
D.
, and
Nasuti
,
F.
,
2019
, “
Numerical Investigation on Radiative Heat Loads in Liquid Rocket Thrust Chambers
,”
J. Propul. Power
,
35
(
5
), pp.
930
943
.10.2514/1.B37536
3.
Hammad
,
K. J.
, and
Naraghi
,
M. H. N.
,
1991
, “
Exchange Factor Model for Radiative Heat Transfer Analysis in Rocketengines
,”
J. Thermophys. Heat Transfer
,
5
(
3
), pp.
327
334
.10.2514/3.267
4.
Kumar
,
P.
, and
Eswaran
,
V.
,
2013
, “
A Methodology to Solve 2D and Axisymmetric Radiative Transfer Problems Using a General 3D Solver
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
12
), p.
124501
.10.1115/1.4024674
5.
Modest
,
M. F.
, and
Mazumder
,
S.
,
2021
,
Radiative Heat Transfer
,
Academic Press
,
San Diego, CA
.
6.
Gade
,
R.
, and
Moeslund
,
T. B.
,
2014
, “
Thermal Cameras and Applications: A Survey
,”
Mach. Vision Appl.
,
25
(
1
), pp.
245
262
.10.1007/s00138-013-0570-5
7.
Chowdhury
,
A. S. M. A.
,
Afrose
,
N. J.
, and
Love
,
N.
,
2019
, “
Spectral Radiation Analysis of Premixed Oxy-Methane Flames
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
8
), p.
082701
.10.1115/1.4043772
8.
Westlye
,
F. R.
,
Hartz
,
B. A.
,
Ivarsson
,
A.
,
Fateev
,
A.
, and
Clausen
,
S.
,
2022
, “
Evaluation of Spectral Radiative Properties of Gases in High-Pressure Combustion
,”
J. Quant. Spectrosc. Radiat. Transfer
,
280
, p.
108089
.10.1016/j.jqsrt.2022.108089
9.
Gronarz
,
T.
,
Johansson
,
R.
, and
Kneer
,
R.
,
2018
, “
Modeling of Anisotropic Scattering of Thermal Radiation in Pulverized Coal Combustion
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
6
), p.
062701
.10.1115/1.4038912
10.
Gordon
,
I. E.
,
Rothman
,
L. S.
,
Hill
,
C.
,
Kochanov
,
R. V.
,
Tan
,
Y.
,
Bernath
,
P. F.
,
Birk
,
M.
, et al.,
2017
, “
The HITRAN2016 Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiat. Transfer
,
203
(
3
), pp.
3
69
.10.1016/j.jqsrt.2017.06.038
11.
Rothman
,
L.
,
Gordon
,
I.
,
Barber
,
R.
,
Dothe
,
H.
,
Gamache
,
R.
,
Goldman
,
A.
,
Perevalov
,
V.
,
Tashkun
,
S.
, and
Tennyson
,
J.
,
2010
, “
HITEMP, the High-Temperature Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
15
), pp.
2139
2150
.10.1016/j.jqsrt.2010.05.001
12.
Fraga
,
G. C.
,
Bordbar
,
H.
,
Hostikka
,
S.
, and
França
,
F. H. R.
,
2020
, “
Benchmark Solutions of Three-Dimensional Radiative Transfer in Nongray Media Using Line-by-Line Integration
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
3
), p.
034501
.10.1115/1.4045666
13.
Alberti
,
M.
,
Weber
,
R.
, and
Mancini
,
M.
,
2017
, “
Absorption of Infrared Radiation by Carbon Monoxide at Elevated Temperatures and Pressures: Part a. advancing the Line-by-Line Procedure Based on HITEMP-2010
,”
J. Quant. Spectrosc. Radiat. Transfer
,
200
, pp.
258
271
.10.1016/j.jqsrt.2017.05.024
14.
Goutiere
,
V.
,
Liu
,
F.
, and
Charette
,
A.
,
2000
, “
An Assessment of Real-Gas Modeling in Two-Dimensional Enclosures
,”
J. Quantative Spectrosc. Radiat. Transfer
,
64
(
3
), pp.
299
326
.10.1016/S0022-4073(99)00102-8
15.
Trivic
,
D.
,
O'Brien
,
T.
, and
Amon
,
C.
,
2004
, “
Modeling the Radiation of Anisotropically Scattering Media by Coupling Mie Theory With Finite Volume Method
,”
Int. J. Heat Mass Transfer
,
47
(
26
), pp.
5765
5780
.10.1016/j.ijheatmasstransfer.2004.07.035
16.
Marakis
,
J.
,
Papapavlou
,
C.
, and
Kakaras
,
E.
,
2000
, “
A Parametric Study of Radiative Heat Transfer in Pulverised Coal Furnaces
,”
Int. J. Heat Mass Transfer
,
43
(
16
), pp.
2961
2971
.10.1016/S0017-9310(99)00347-6
17.
Bäckström
,
D.
,
Gall
,
D.
,
Pushp
,
M.
,
Johansson
,
R.
,
Andersson
,
K.
, and
Pettersson
,
J. B.
,
2015
, “
Particle Composition and Size Distribution in Coal Flames–the Influence on Radiative Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
64
, pp.
70
80
.10.1016/j.expthermflusci.2015.02.010
18.
Johansson
,
R.
,
2017
, “
Efficient Treatment of Non-Grey Radiative Properties of Particles and Gases in Modelling of Radiative Heat Transfer in Combustion Environments
,”
Int. J. Heat Mass Transfer
,
108
, pp.
519
528
.10.1016/j.ijheatmasstransfer.2016.12.042
19.
Johansson
,
R.
,
Gronarz
,
T.
, and
Kneer
,
R.
,
2017
, “
Influence of Index of Refraction and Particle Size Distribution on Radiative Heat Transfer in a Pulverized Coal Combustion Furnace
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
4
), p.
042702
.10.1115/1.4035205
20.
Patil
,
K.
,
Singh
,
K.
, and
Kumar
,
P.
,
2023
, “
Calculation of Spectral Radiative Properties of Fly Ash and Radiative Heat Transfer
,”
Proceedings of the 27th National and 5th International ISHMT-ASTFE Heat and Mass Transfer Conference
,
Begel House Inc., IIT Patna
,
Patna, Bihar, India
,
Dec. 14–17
, pp.
465
470
.10.1615/IHMTC-2023.760
21.
Bahador
,
M.
, and
Sundén
,
B.
,
2008
, “
Investigation on the Effects of Fly Ash Particles on the Thermal Radiation in Biomass Fired Boilers
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2411
2417
.10.1016/j.ijheatmasstransfer.2007.08.013
22.
Patil
,
K.
,
Singh
,
K.
,
Mehta
,
B.
, and
Kumar
,
P.
,
2024
, “
Estimation of Radiative Heat Transfer From a Mixture of Gases and Al2O3 Particles
,”
International Conference on Advances in Aerospace and Energy Systems (IAES- 2024)
, Thiruvananthapuram, Kerala, India, Apr. 4–6.
23.
Liu
,
F.
, and
Swithenbank
,
J.
,
1993
, “
The Effects of Particle Size Distribution and Refractive Index on Fly-Ash Radiative Properties Using a Simplified Approach
,”
Int. J. Heat Mass Transfer
,
36
(
7
), pp.
1905
1912
.10.1016/S0017-9310(05)80178-4
24.
Goodwin
,
D. G.
, and
Mitchner
,
M.
,
1989
, “
Infrared Optical Constants of Coal Slags - Dependence on Chemical Composition
,”
J. Thermophys. Heat Transfer
,
3
(
1
), pp.
53
60
.10.2514/3.125
25.
Jahromi
,
R.
,
Rezaei
,
M.
,
Hashem Samadi
,
S.
, and
Jahromi
,
H.
,
2021
, “
Biomass Gasification in a Downdraft Fixed-Bed Gasifier: Optimization of Operating Conditions
,”
Chem. Eng. Sci.
,
231
, p.
116249
.10.1016/j.ces.2020.116249
26.
Majeski
,
A.
,
Runstedtler
,
A.
,
D'alessio
,
J.
, and
Macfadyen
,
N.
,
2015
, “
Injection of Pulverized Coal and Natural Gas Into Blast Furnaces for Iron-Making: Lance Positioning and Design
,”
ISIJ Int.
,
55
(
7
), pp.
1377
1383
.10.2355/isijinternational.55.1377
27.
Shakeel
,
M. R.
,
Sanusi
,
Y. S.
, and
Mokheimer
,
E. M.
,
2018
, “
Numerical Modeling of Oxy-Methane Combustion in a Model Gas Turbine Combustor
,”
Appl. Energy
,
228
, pp.
68
81
.10.1016/j.apenergy.2018.06.071
28.
Raithby
,
G. D.
, and
Chui
,
E. H.
,
1990
, “
A Finite Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
112
(
2
), pp.
415
423
.10.1115/1.2910394
29.
Kumar
,
P.
, and
Eswaran
,
V.
,
2007
, “
A Hybrid Scheme for Spatial Differencing in the Finite Volume Method for Radiative Heat Transfer in Complex Geometries
,”
RADIATIVE TRANSFER-V. Proceedings of the Fifth International Symposium on Radiative Transfer
,
Begel House Inc
., Bodrum, Turkey, June, 17–22, pp.
1
10
.10.1615/ICHMT.2007.RadTransfProc
30.
Kumar
,
P.
, and
Eswaran
,
V.
,
2010
, “
A Numerical Simulation of Combined Radiation and Natural Convection in a Differential Heated Cubic Cavity
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
132
(
2
), p.
023501
.10.1115/1.4000180
31.
Chai
,
J.
, and
Patankar
,
S.
,
2018
, “
Finite Volume Method for Radiation Heat Transfer
,”
Advances in Numerical Heat Transfer
,
CRC Press
, Boca Raton, FL, pp.
109
141
.
32.
Gordon
,
I. E.
,
Rothman
,
L. S.
,
Hargreaves
,
R. J.
,
Hashemi
,
R.
,
Karlovets
,
E. V.
,
Skinner
,
F. M.
,
Conway
,
E. K.
, et al.,
2022
, “
The HITRAN2020 Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiat. Transfer
,
277
, p.
107949
.10.1016/j.jqsrt.2021.107949
33.
Bartwal
,
N.
, and
Kumar
,
P.
,
2018
, “
Calculation of Non-Gray Radiation Absorptivity and Absorption Coefficient of Mixture of Gases From HITEMP-2010 Database
,”
International Heat Transfer Conference Digital Library
,
Begel House Inc
., Beijing, China, Aug. 10–15, pp.
8297
8306
.10.1615/IHTC16.cms.023070
34.
Bartwal
,
N.
, and
Kumar
,
P.
,
2017
, “
Calculation of Non-Gray Radiation Transmissivity, Absorptivity of Carbon-Dioxide From HITEMP 2010 Database at High Temperature
,”
24th National & 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference
,
BITS-Pilani, Hyderabad, India
, Dec. 27–30, pp.
1
8
.https://www.researchgate.net/publication/320728041_CALCULATION_OF_NON?GRAY_RADIATION_TRANSMISSIVITY_ABSORPTIVITY_OF_CARBON?DIOXIDE_FROM_HITEMP?2010_DATABASE_AT_HIGH_TEMPERATURE
35.
Bartwal
,
N.
,
Chanakya
,
G.
, and
Kumar
,
P.
,
2017
, “
Calculation of Non-Gray Radiation Transmissivity, Absorptivity and Absorption Coefficient of Water Vapour From HITEMP-2010 Database at High Temperature
,”
6th Asian Symposium on Computational Heat Transfer and Fluid Flow
,
IITM
,
Chennai, India
, Dec. 10–13, pp.
1
10
.https://www.researchgate.net/publication/319092605_CALCULATION_OF_NON?GRAY_RADIATION_TRANSMISSIVITY_ABSORPTIVITY_AND_ABSORPTION_COEFFICIENT_OF_WATER_VAPOUR_FROM_HITEMP?2010_DATABASE_AT_HIGH_TEMPERATURE
36.
Dammann
,
M.
,
Weber
,
R.
,
Fateev
,
A.
,
Clausen
,
S.
,
Alberti
,
M.
,
Kolb
,
T.
, and
Mancini
,
M.
,
2024
, “
Thermal Radiation at High-Temperature and High-Pressure Conditions: Validation of HITEMP-2010 for Carbon Dioxide
,”
J. Quant. Spectrosc. Radiat. Transfer
,
329
, p.
109121
.10.1016/j.jqsrt.2024.109121
37.
Modest
,
M. F.
,
2013
, “
The Treatment of Nongray Properties in Radiative Heat Transfer: From Past to Present
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
6
), p.
061801
.10.1115/1.4023596
38.
van de Hulst
,
H. C.
,
1958
, “
Light Scattering by Small Particles
,”
Q. J. R. Meteorol. Soc.
,
84
(
360
), pp.
198
199
.10.1002/qj.49708436025
39.
van de Hulst
,
H.
,
1968
, “
Asymptotic Fitting, a Method for Solving Anisotropic Transfer Problems in Thick Layers
,”
J. Comput. Phys.
,
3
(
2
), pp.
291
306
.10.1016/0021-9991(68)90023-5
40.
Hansen
,
J. E.
,
1969
, “
Exact and Approximate Solutions for Multiple Scattering by Cloudy and Hazy Planetary Atmospheres
,”
J. Atmos. Sci.
,
26
(
3
), pp.
478
487
.10.1175/1520-0469(1969)026<0478:EAASFM>2.0.CO;2
You do not currently have access to this content.