Abstract

The microchannel flow boiling cooling technology has excellent developmental potential in high heat flux electronic devices. Saturated flow boiling in a microchannel with V-shaped grooved pin fins is simulated using the volume of fluid (VOF) model. The working coolant is Novec649. The depth-to-width ratio β of a single groove is set as 0, 1, and 2, respectively. The results show that with the increase of β, the maximal average temperature of heated walls decreases, and at q =100, 300, and 500 kW·m−2, the average temperature at β = 2 declined 1.5, 5.3, and 9.3 K, respectively, compared with that at β = 0. The corresponding pressure drops are decreased by 24%, 25%, and 24%, respectively. The corresponding heat transfer factor remarkably increases 14–40%. Moreover, the model with β = 1 has the superior heat transfer coefficient while the model with β = 2 has the best comprehensive heat transfer factor as a whole.

References

1.
Murshed
,
S. M. S.
, and
de Castro
,
C. A. N.
,
2017
, “
A Critical Review of Traditional and Emerging Techniques and Fluids for Electronics Cooling
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
821
833
.10.1016/j.rser.2017.04.112
2.
Maqbool
,
Z.
,
Hanief
,
M.
, and
Parveez
,
M.
,
2023
, “
Review on Performance Enhancement of Phase Change Material Based Heat Sinks in Conjugation With Thermal Conductivity Enhancers for Electronic Cooling
,”
J. Energy Storage
,
60
, p.
106591
.10.1016/j.est.2022.106591
3.
Kandlikar
,
S. G.
,
Colin
,
S.
,
Peles
,
Y.
,
Garimella
,
S.
,
Pease
,
R. F.
,
Brandner
,
J. J.
, and
Tuckerman
,
D. B.
,
2013
, “
Heat Transfer in Microchannels-2012 Status and Research Needs
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
9
), pp.
942
955
.10.1115/1.4024354
4.
Kandlikar
,
S. G.
,
2020
, “
Evaporation Momentum Force and Its Relevance to Boiling Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
, p.
100801
.10.1115/1.4047268
5.
Misale
,
M.
, and
Bergles
,
A. E.
,
1997
, “
The Influence of Channel Width on Natural Convection and Boiling Heat Transfer From Simulated Microelectronic Components
,”
Exp. Therm. Fluid Sci.
,
14
(
2
), pp.
187
193
.10.1016/S0894-1777(96)00065-9
6.
Xie
,
L.
,
Hu
,
B.
,
Xu
,
Y. S.
,
Lin
,
M.
, and
Wang
,
Q. W.
,
2025
, “
Experimental Study on Flow Boiling Heat Transfer in Rigid-Tail Rib-Channel Under Rolling Motion Conditions
,”
Appl. Therm. Eng.
,
258
, p.
124468
.10.1016/j.applthermaleng.2024.124468
7.
Wu
,
X. L.
,
Li
,
C. Y.
,
Yang
,
J. L.
,
Liu
,
Y.
, and
Han
,
X. H.
,
2023
, “
Theoretical and Experimental Research on Flow Boiling Heat Transfer in Microchannels for IGBT Modules
,”
Int. J. Heat Mass Transfer
,
205
, p.
123900
.10.1016/j.ijheatmasstransfer.2023.123900
8.
Kedzierski
,
M. A.
, and
Lin
,
L.
,
2023
, “
A Simple Correlation for Horizontal Microfin Tube Convective Boiling
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
, p.
021602
.10.1115/1.4055891
9.
Oudah
,
S. K.
,
Fang
,
R.
,
Tikadar
,
A.
,
Salman
,
A. S.
, and
Khan
,
J. A.
,
2020
, “
An Experimental Investigation of the Effect of Multiple Inlet Restrictors on the Heat Transfer and Pressure Drop in a Flow Boiling Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
153
, p.
119582
.10.1016/j.ijheatmasstransfer.2020.119582
10.
Ma
,
D. D.
,
Xia
,
G. D.
,
Li
,
Y. F.
,
Jia
,
Y. T.
, and
Wang
,
J.
,
2016
, “
Effects of Structural Parameters on Fluid Flow and Heat Transfer Characteristics in Microchannel With Offset Zigzag Grooves in Sidewall
,”
Int. J. Heat Mass Transfer
,
101
, pp.
427
435
.10.1016/j.ijheatmasstransfer.2016.04.091
11.
Li
,
Y. F.
,
Xia
,
G. D.
,
Jia
,
Y. T.
,
Cheng
,
Y.
, and
Wang
,
J.
,
2017
, “
Experimental Investigation of Flow Boiling Performance in Microchannels With and Without Triangular cavities - A Comparative Study
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1511
1526
.10.1016/j.ijheatmasstransfer.2017.01.011
12.
Xu
,
Z. G.
,
Qin
,
J.
, and
Qu
,
G. M.
,
2022
, “
Numerical and Experimental Study of Pool Boiling Heat Transfer Mechanisms in V-Shaped Grooved Porous Metals
,”
Int. J. Therm. Sci.
,
173
, p.
107393
.10.1016/j.ijthermalsci.2021.107393
13.
Deng
,
D. X.
,
Chen
,
R. X.
,
Tang
,
Y.
,
Lu
,
L. S.
,
Zeng
,
T.
, and
Wan
,
W.
,
2015
, “
A Comparative Study of Flow Boiling Performance in Reentrant Copper Microchannels and Reentrant Porous Microchannels With Multi-Scale Rough Surface
,”
Int. J. Multiphase Flow
,
72
, pp.
275
287
.10.1016/j.ijmultiphaseflow.2015.01.004
14.
Wei
,
A. B.
,
Ren
,
X.
,
Lin
,
S. F.
, and
Zhang
,
X. B.
,
2020
, “
CFD Analysis on Flow and Heat Transfer Mechanism of a Microchannel Ω-Shape Heat Pipe Under Zero Gravity Condition
,”
Int. J. Heat Mass Transfer
,
163
, p.
120448
.10.1016/j.ijheatmasstransfer.2020.120448
15.
Hua
,
J. Y.
,
Li
,
G.
,
Zhao
,
X. B.
,
Li
,
Q. H.
, and
Hu
,
J.
,
2016
, “
Study on the Flow Resistance Performance of Fluid Cross Various Shapes of Micro-Scale Pin Fin
,”
Appl. Therm. Eng.
,
107
, pp.
768
775
.10.1016/j.applthermaleng.2016.07.048
16.
Deng
,
W.
,
Wan
,
Y.
,
Qin
,
J. R.
,
Zhang
,
X. Y.
, and
Chu
,
D. X.
,
2017
, “
Flow Boiling Enhancement of Structured Microchannels With Micro Pin Fins
,”
Int. J. Heat Mass Transfer
,
105
, pp.
338
349
.10.1016/j.ijheatmasstransfer.2016.09.086
17.
Markal
,
B.
, and
Kul
,
B.
,
2023
, “
Effect of a New Type Staggered Pin Fin Configuration on Flow Boiling Characteristics of Micro-Heat Sinks
,”
J. Braz. Soc. Mech. Sci. Eng.
,
45
(
10
), p.
552
.10.1007/s40430-023-04483-5
18.
Zhou
,
F.
,
Zhou
,
W.
,
Zhang
,
C. Y.
,
Qiu
,
Q. F.
,
Yuan
,
D.
, and
Chu
,
X. Y.
,
2020
, “
Experimental and Numerical Studies on Heat Transfer Enhancement of Microchannel Heat Exchanger Embedded With Different Shape Micropillars
,”
Appl. Therm. Eng.
,
175
, p.
115296
.10.1016/j.applthermaleng.2020.115296
19.
Qin
,
L. W.
,
Li
,
S. H.
,
Zhao
,
X. B.
, and
Zhang
,
X. Q.
,
2021
, “
Experimental Research on Flow Boiling Characteristics of Micro Pin-Fin Arrays With Different Hydrophobic Coatings
,”
Int. Commun. Heat Mass Transfer
,
126
, p.
105456
.10.1016/j.icheatmasstransfer.2021.105456
20.
Deng
,
D. X.
,
Zeng
,
L.
,
Sun
,
W.
,
Pi
,
G.
, and
Yang
,
Y.
,
2021
, “
Experimental Study of Flow Boiling Performance of Open-Ring Pin Fin Microchannels
,”
Int. J. Heat Mass Transfer
,
167
, p.
120829
.10.1016/j.ijheatmasstransfer.2020.120829
21.
Chang
,
S. W.
, and
Cheng
,
T. H.
,
2021
, “
Thermal Performance of Channel Flow With Detached and Attached Pin-Fins of Hybrid Shapes Under Inlet Flow Pulsation
,”
Int. J. Heat Mass Transfer
,
164
, p.
120554
.10.1016/j.ijheatmasstransfer.2020.120554
22.
Feng
,
S.
,
Yan
,
Y. F.
,
Li
,
H. J.
,
Zhang
,
L.
, and
Yang
,
S. L.
,
2021
, “
Thermal Management of 3D Chip With Non-Uniform Hotspots by Integrated Gradient Distribution Annular-Cavity Micro-Pin Fins
,”
Appl. Therm. Eng.
,
182
, p.
116132
.10.1016/j.applthermaleng.2020.116132
23.
Ma
,
X.
,
Ji
,
X. Y.
,
Wang
,
J. Y.
,
Fang
,
J. B.
,
Zhang
,
Y. H.
, and
Wei
,
J. J.
,
2022
, “
Flow Boiling Heat Transfer Characteristics on Micro-Pin-Finned Surfaces in a Horizontal Narrow Microchannel
,”
Int. J. Heat Mass Transfer
,
194
, p.
123071
.10.1016/j.ijheatmasstransfer.2022.123071
24.
Yan
,
Y. F.
,
Xue
,
Z. G.
,
Xu
,
F. L.
,
Li
,
L. X.
,
Shen
,
K. M.
,
Li
,
J. B.
,
Yang
,
Z. Q.
, and
He
,
Z. Q.
,
2022
, “
Numerical Investigation on Thermal-Hydraulic Characteristics of the Micro Heat Sink With Gradient Distribution Pin Fin Arrays and Narrow Slots
,”
Appl. Therm. Eng.
,
202
, p.
117836
.10.1016/j.applthermaleng.2021.117836
25.
Markal
,
B.
,
Kul
,
B.
,
Avci
,
M.
, and
Varol
,
R.
,
2022
, “
Effect of Gradually Expanding Flow Passages on Flow Boiling of Micro Pin Fin Heat Sinks
,”
Int. J. Heat Mass Transfer
,
197
, p.
123355
.10.1016/j.ijheatmasstransfer.2022.123355
26.
Deng
,
D. X.
,
Chen
,
L.
,
Wan
,
W.
,
Fu
,
T.
, and
Huang
,
X.
,
2019
, “
Flow Boiling Performance in Pin Fin- Interconnected Reentrant Microchannels Heat Sink in Different Operational Conditions
,”
Appl. Therm. Eng.
,
150
, pp.
1260
1272
.10.1016/j.applthermaleng.2019.01.092
27.
Cui
,
P. L.
, and
Liu
,
Z. Y.
,
2021
, “
Enhanced Flow Boiling of HFE-7100 in Picosecond Laser Fabricated Copper Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
175
, p.
121387
.10.1016/j.ijheatmasstransfer.2021.121387
28.
Ma
,
D. D.
,
Tang
,
Y. X.
, and
Xia
,
G. D.
,
2021
, “
Experimental Investigation of Flow Boiling Performance in Sinusoidal Wavy Microchannels With Secondary Channels
,”
Appl. Therm. Eng.
,
199
, p.
117502
.10.1016/j.applthermaleng.2021.117502
29.
Zhou
,
Z. L.
,
Wang
,
S.
,
He
,
J.
,
Ke
,
H. B.
,
Lin
,
M.
, and
Wang
,
Q. W.
,
2023
, “
Bubble Dynamics and Heat Transfer Characteristics of Flow Boiling in a Single Pentagonal Rib Channel
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
1
), p.
011602
.10.1115/1.4056067
30.
Qi
,
D.
,
He
,
J.
,
Xu
,
Y. S.
,
Lin
,
M.
, and
Wang
,
Q. W.
,
2022
, “
Effect of Rib Diameter on Flow Boiling Heat Transfer With Staggered Rib Arrays in a Heat Sink
,”
Energy
,
239
, p.
122323
.10.1016/j.energy.2021.122323
31.
Zhao
,
Z. X.
,
Hu
,
B.
,
He
,
J.
,
Lin
,
M.
, and
Ke
,
H. B.
,
2023
, “
Effect of Fin Shapes on Flow Boiling Heat Transfer With Staggered Fin Arrays in a Heat Sin
,”
Appl. Therm. Eng.
,
225
, p.
120179
.10.1016/j.applthermaleng.2023.120179
32.
Hu
,
B.
,
Qi
,
D.
,
Xu
,
Y. S.
,
Lin
,
M.
, and
Wang
,
Q. W.
,
2024
, “
A Comparative Study of Flow Boiling Heat Transfer and Pressure Drop Characteristics in a Pin-Finned Heat Sink at Horizontal/Vertical Upward Flow Orientations
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
1
), p.
011006
.10.1115/1.4063765
33.
He
,
X. J.
,
Wang
,
J.
,
Li
,
Z. L.
,
Wan
,
R.
,
Hu
,
J.
, and
Yang
,
Z. M.
,
2022
, “
Numerical Simulation on Shell-Side Flow Pattern Transition and Heat Transfer of Non-Azeotropic Refrigerant Mixture
,”
Appl. Therm. Eng.
,
214
, p.
118917
.10.1016/j.applthermaleng.2022.118917
34.
Wang
,
K. M.
,
Hu
,
C. Z.
,
Cai
,
Y.
,
Li
,
Y. B.
, and
Tang
,
D. W.
,
2023
, “
Investigation of Heat Transfer and Flow Characteristics in Two-Phase Loop Thermosyphon by Visualization Experiments and CFD Simulations
,”
Appl. Therm. Eng.
,
203
, p.
123812
.10.1016/j.ijheatmasstransfer.2022.123812
35.
Guo
,
Y.
,
Zhu
,
C. Y.
,
Gong
,
L.
, and
Zhang
,
Z. B.
,
2023
, “
Numerical Simulation of Flow Boiling Heat Transfer in Microchannel With Surface Roughness
,”
Int. J. Heat Mass Transfer
,
204
, p.
123830
.10.1016/j.ijheatmasstransfer.2022.123830
36.
Lee
,
W. H.
,
1980
,
A Pressure Iteration Scheme for Two-Phase Flow Modeling
,
Hemisphere Publishing
,
Washington, DC
.
37.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
38.
Sun
,
R. R.
,
Hua
,
J. Y.
,
Zhang
,
X. Q.
, and
Zhao
,
X. B.
,
2021
, “
Experimental Study on the Effect of Shape on the Boiling Flow and Heat Transfer Characteristics of Different Pin-Fin Microchannels
,”
Heat Mass Transfer
,
57
(
12
), pp.
2081
2095
.10.1007/s00231-021-03092-z
39.
Yang
,
J. F.
,
Lin
,
Y. S.
,
Ke
,
H. B.
,
Zeng
,
M.
, and
Wang
,
Q. W.
,
2016
, “
Investigation on Combined Multiple Shell-Pass Shell-and-Tube Heat Exchanger With Continuous Helical Baffles
,”
Energy
,
115
(
3
), pp.
1572
1579
.10.1016/j.energy.2016.05.090
40.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Measurement and Prediction of Pressure Drop in Two Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2737
2753
.10.1016/S0017-9310(03)00044-9
You do not currently have access to this content.