Abstract

High-pressure membrane dehumidification is of interest for aircraft environmental control system (ECS) applications. Typically, membrane dehumidifier (MD) modules are characterized by manufacturers over a range of mass flow rates, temperatures, and pressures at saturation conditions. However, to evaluate the suitability of high-pressure membrane dehumidification for aircraft applications, the performance must be characterized over the broader range of psychrometric conditions that could be encountered. Moreover, the practical integration of an MD into an environmental control system necessitates reconsideration of the traditional product sweep approach, where some of the dry air produced is removed and supplied to the other side of the membrane to enhance mass transfer. In an environmental control system, using product sweep would require excessive bleed air from the engine and cause unbalanced flow in the turbomachinery. To avoid this, alternate sources of sweep must be considered, and their effects on dehumidification must be evaluated. This work conducts an experimental investigation of an MD module using product sweep under a range of psychrometric conditions, then compares product and humid sweep modes to understand the effects of sweep conditions on dehumidification performance. Concurrently, a numerical model of an MD is implemented and validated—first against the module specification sheet, then against the empirical results that represent moderate altitude aircraft conditions. Ultimately, the feasibility of a hot and humid sweep source to maintain sufficient dehumidification performance under realistic altitude conditions is demonstrated.

References

1.
Woods
,
J.
,
2014
, “
Membrane Processes for Heating, Ventilation, and Air Conditioning
,”
Renewable Sustainable Energy Rev.
,
33
, pp.
290
304
.10.1016/j.rser.2014.01.092
2.
Qu
,
M.
,
Abdelaziz
,
O.
,
Gao
,
Z.
, and
Yin
,
H.
,
2018
, “
Isothermal Membrane-Based Air Dehumidification: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
4060
4069
.10.1016/j.rser.2017.10.067
3.
Yang
,
B.
,
Yuan
,
W.
,
Kong
,
X.
,
Zheng
,
T.
, and
Li
,
F.
,
2023
, “
Mass Transfer Study on High-Pressure Membrane Dehumidification Applied to Aircraft Environmental Control System
,”
Int. J. Heat Mass Transfer
,
202
, p.
123680
.10.1016/j.ijheatmasstransfer.2022.123680
4.
Niu
,
J.
,
2001
, “
Membrane-Based Enthalpy Exchanger: Material Considerations and Clarification of Moisture Resistance
,”
J. Membr. Sci.
,
189
(
2
), pp.
179
191
.10.1016/S0376-7388(00)00680-3
5.
Zhang
,
L.
,
Liang
,
C.
, and
Pei
,
L.
,
2008
, “
Heat and Moisture Transfer in Application Scale Parallel-Plates Enthalpy Exchangers With Novel Membrane Materials
,”
J. Membr. Sci.
,
325
(
2
), pp.
672
682
.10.1016/j.memsci.2008.08.041
6.
Min
,
J.
, and
Su
,
M.
,
2010
, “
Performance Analysis of a Membrane-Based Energy Recovery Ventilator: Effects of Membrane Spacing and Thickness on the Ventilator Performance
,”
Appl. Therm. Eng.
,
30
(
8–9
), pp.
991
997
.10.1016/j.applthermaleng.2010.01.010
7.
Yu
,
H.
,
Yang
,
X.
,
Wang
,
R.
, and
Fane
,
A. G.
,
2011
, “
Numerical Simulation of Heat and Mass Transfer in Direct Membrane Distillation in a Hollow Fiber Module With Laminar Flow
,”
J. Membr. Sci.
,
384
(
1–2
), pp.
107
116
.10.1016/j.memsci.2011.09.011
8.
Yuan
,
W.
,
Li
,
Y.
, and
Wang
,
C.
,
2012
, “
Comparison Study of Membrane Dehumidification Aircraft Environmental Control Systems
,”
J. Aircr.
,
49
(
3
), pp.
815
821
.10.2514/1.C031432
9.
Zaw
,
K.
,
Safizadeh
,
M. R.
,
Luther
,
J.
, and
Ng
,
K. C.
,
2013
, “
Analysis of a Membrane Based Air-Dehumidification Unit for Air Conditioning in Tropical Climates
,”
Appl. Therm. Eng.
,
59
(
1–2
), pp.
370
379
.10.1016/j.applthermaleng.2013.05.029
10.
Yuan
,
W.
,
Yang
,
B.
,
Guo
,
B.
,
Li
,
X.
,
Zuo
,
Y.
, and
Hu
,
W.
,
2015
, “
A Novel Environmental Control System Based on Membrane Dehumidification
,”
Chin. J. Aeronaut.
,
28
(
3
), pp.
712
719
.10.1016/j.cja.2015.04.016
11.
Liu
,
Y.
,
Cui
,
X.
,
Yan
,
W.
,
Su
,
J.
,
Duan
,
F.
, and
Jin
,
L.
,
2020
, “
Analysis of Pressure-Driven Water Vapor Separation in Hollow Fiber Composite Membrane for Air Dehumidification
,”
Sep. Purif. Technol.
,
251
, p.
117334
.10.1016/j.seppur.2020.117334
12.
Gao
,
Z.
,
Abdelaziz
,
O.
, and
Qu
,
M.
,
2017
, “
Modeling and Simulation of Membrane-Based Dehumidification and Energy Recovery Process
,”
ASHRAE Winter Conference
, Las Vegas, NV, Jan. 28–Feb. 1, pp.
1
8
.https://www.researchgate.net/publication/315111185_Modeling_and_Simulation_of_Membrane-Based_Dehumidification_and_Energy_Recovery_Process
13.
Bui
,
T. D.
,
Chen
,
F.
,
Nida
,
A.
,
Chua
,
K. J.
, and
Ng
,
K. C.
,
2015
, “
Experimental and Modeling Analysis of Membrane-Based Air Dehumidification
,”
Sep. Purif. Technol.
,
144
, pp.
114
122
.10.1016/j.seppur.2015.02.019
14.
Zhang
,
L.-Z.
,
Liang
,
C.-H.
, and
Pei
,
L.-X.
,
2010
, “
Conjugate Heat and Mass Transfer in Membrane-Formed Channels in All Entry Regions
,”
Int. J. Heat Mass Transfer
,
53
(
5–6
), pp.
815
824
.10.1016/j.ijheatmasstransfer.2009.11.043
15.
National Research Council (US) Committee on Airliner Cabin Air Quality
, 1986, “
The Airliner Cabin Environment: Air Quality and Safety
,” National Academies Press, Washington, DC, accessed 2023, https://www.ncbi.nlm.nih.gov/books/NBK219009/
16.
Subramanya
,
S.
,
Joksimovic
,
A.
,
Carbonneau
,
X.
,
Rebholz
,
S.
, and
Tong-Yette
,
F.
,
2024
, “
Review of the Commercial Aircraft Environmental Control Systems: Historical Developments to the Current State of the Art
,”
AIAA
Paper No. 2024-2815.10.2514/6.2024-2815
17.
Jennions
,
I.
,
Ali
,
F.
,
Miguez
,
M. E.
, and
Escobar
,
I. C.
,
2020
, “
Simulation of an Aircraft Environmental Control System
,”
Appl. Therm. Eng.
,
172
, p.
114925
.10.1016/j.applthermaleng.2020.114925
18.
Koszut
,
J.
,
Boyina
,
K.
,
Popovic
,
G.
,
Carpenter
,
J.
,
Wang
,
S.
, and
Miljkovic
,
N.
,
2022
, “
Superhydrophobic Heat Exchangers Delay Frost Formation and Reduce Defrost Energy Input of Aircraft Environmental Control Systems
,”
Int. J. Heat Mass Transfer
,
189
, p.
122669
.10.1016/j.ijheatmasstransfer.2022.122669
19.
Hollon
,
D.
,
2023
, “
Icing Mitigation Via High-Pressure Membrane Dehumidification in an Aircraft Thermal Management
,”
Ph.D. thesis
,
Wright State University
, Fairborn, OH.https://corescholar.libraries.wright.edu/etd_all/2779/
20.
Yampolskii
,
Y.
,
Pinnau
,
I.
, and
Freeman
,
B.
,
2006
,
Materials Science of Membranes for Gas and Vapor Separation
, 1st ed.,
Wiley
, West Sussex, UK.
21.
Mason
,
E. A.
, and
Malinauskas
,
A. P.
,
1983
,
Gas Transport in Porous Media: The Dusty-Gas Model, Chemical Engineering Monographs
,
Elsevier
,
Amsterdam, The Netherlands/New York
.
22.
Datta
,
R.
,
Dechapanichkul
,
S.
,
Kim
,
J. S.
,
Fang
,
L. Y.
, and
Uehara
,
H.
,
1992
, “
A Generalized Model for the Transport of Gases in Porous, Non-Porous, and Leaky Membranes. I. Application to Single Gases
,”
J. Membr. Sci.
,
75
(
3
), pp.
245
263
.10.1016/0376-7388(92)85067-S
23.
Drioli
,
E.
, and
Giorno
,
L.
,
2016
,
Encyclopedia of Membranes
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg, Germany
.
24.
Wijmans
,
J.
, and
Baker
,
R.
,
1995
, “
The Solution-Diffusion Model: A Review
,”
J. Membr. Sci.
,
107
(
1–2
), pp.
1
21
.10.1016/0376-7388(95)00102-I
25.
Alei
,
P.
,
Schletz
,
J.
,
Jensvold
,
J.
,
Tegrotenhuis
,
W.
,
Allen
,
W.
,
Coan
,
F.
,
Skala
,
K.
,
Clark
,
D.
, and
Wait
,
H.
, Jr.
,
1997
, “
Loom Processing of Hollow Fiber Membranes
,” U.S. Patent No. 5,598,874.
26.
Coan
,
F.
, and
Jensvold
,
J.
,
2007
, “
Air Dehydration Membrane
,” U.S. Patent No. 7,249,174 B2.
27.
Coan
,
F.
, and
Schletz
,
J.
,
2013
, “
Integrated Membrane Module for Gas Dehydration and Gas Separation
,” U.S. Patent No. 8,398,755 B2.
28.
Scovazzo
,
P.
, and
MacNeill
,
R.
,
2019
, “
Membrane Module Design, Construction, and Testing for Vacuum Sweep Dehumidification (VSD): Part I, Prototype Development and Module Design
,”
J. Membr. Sci.
,
576
, pp.
96
107
.10.1016/j.memsci.2018.12.076
29.
Mi
,
L.
, and
Hwang
,
S.-T.
,
1999
, “
Correlation of Concentration Polarization and Hydrodynamic Parameters in Hollow Fiber Modules
,”
J. Membr. Sci.
,
159
(
1–2
), pp.
143
165
.10.1016/S0376-7388(99)00046-0
30.
Lipnizki
,
F.
, and
Field
,
R. W.
,
2001
, “
Mass Transfer Performance for Hollow Fibre Modules With Shell-Side Axial Feed Flow: Using an Engineering Approach to Develop a Framework
,”
J. Membr. Sci.
,
193
(
2
), pp.
195
208
.10.1016/S0376-7388(01)00512-9
31.
Zhang
,
L.
,
2006
, “
Fabrication of a Lithium Chloride Solution Based Composite Supported Liquid Membrane and Its Moisture Permeation Analysis
,”
J. Membr. Sci.
,
276
(
1–2
), pp.
91
100
.10.1016/j.memsci.2005.09.035
32.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
New York
.
33.
Zhang
,
L.-Z.
, and
Huang
,
S.-M.
,
2011
, “
Coupled Heat and Mass Transfer in a Counter Flow Hollow Fiber Membrane Module for Air Humidification
,”
Int. J. Heat Mass Transfer
,
54
(
5–6
), pp.
1055
1063
.10.1016/j.ijheatmasstransfer.2010.11.025
34.
Chowdhury
,
S. H.
,
Ali
,
F.
, and
Jennions
,
I. K.
,
2023
, “
A Review of Aircraft Environmental Control System Simulation and Diagnostics
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
237
(
11
), pp.
2453
2467
.10.1177/09544100231154441
35.
Generon
,
2023
,
Membrane Modules Model 6150GMD
,
Generon
, Houston, TX.
36.
Kroese
,
D. P.
,
Taimre
,
T.
, and
Botev
,
Z. I.
,
2011
,
Handbook of Monte Carlo Methods
(Wiley Series in Probability and Statistics), 1st ed.,
Wiley
, Hoboken, NJ.
37.
Yang
,
B.
,
Yuan
,
W.
,
Gao
,
F.
, and
Guo
,
B.
,
2015
, “
A Review of Membrane-Based Air Dehumidification
,”
Indoor Built Environ.
,
24
(
1
), pp.
11
26
.10.1177/1420326X13500294
38.
Wanstall
,
C. T.
,
Bittle
,
J. A.
, and
Agrawal
,
A. K.
,
2023
, “
Phase Diagram to Demarcate Supercritical, Transcritical, and Continuous Phase Regimes for Binary Fluid Equilibrium Mixing Relevant to Combustion Applications
,”
J. Supercrit. Fluids
,
199
, p.
105935
.10.1016/j.supflu.2023.105935
39.
Herrmann
,
S.
,
Kretzschmar
,
H.-J.
, and
Gatley
,
D.
,
2009
, “
Thermodynamic Properties of Real Moist Air, Dry Air, Steam, Water, and Ice (RP-1485)
,”
HVACR Res.
,
15
(
5
), pp.
961
986
.10.1080/10789669.2009.10390874
You do not currently have access to this content.