Abstract

Gas natural convection is one common phenomenon in industrial applications, especially for the thermal management of electronic devices. In this study, a numerical model for gas natural convection in a confined porous cavity is constructed based on the lattice Boltzmann (LB) method, which predicts the density-difference-induced flow using a multiple relaxation time (MRT) collision operator. At the gas–solid interfaces, the microscale flow and heat transfer effects are formulated using an effective slip boundary condition. The established LB model is applied to investigate the Nusselt number for heated obstacles arranged in a staggered formation in the cavity. Based on the calculated data, the Nusselt number values obtained for a five-cylinder pore-scale (single pore, SP) domain are analyzed and compared to those for a 13-cylinder (multipore, MP) one. The Nusselt number shows a sharp decrease as soon as the microscale effect is considered at the obstacle walls. It was also observed that the Nusselt number for MP domain achieved lower values than that of SP one. The findings in this work can contribute to the design of thermal management device with confined porous media.

References

1.
Fletcher
,
L. S.
,
1990
, “
A Review of Thermal Enhancement Techniques for Electronic Systems
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
13
(
4
), pp.
1012
1021
.10.1109/33.62543
2.
Pop
,
E.
,
2010
, “
Energy Dissipation and Transport in Nanoscale Devices
,”
Nano Res.
,
3
(
3
), pp.
147
169
.10.1007/s12274-010-1019-z
3.
Husain
,
S.
, and
Khan
,
S. A.
,
2021
, “
A Review on Heat Transfer Enhancement Techniques During Natural Convection in Vertical Annular Geometry
,”
Cleaner Eng. Technol.
,
5
, p.
100333
.10.1016/j.clet.2021.100333
4.
Micheli
,
L.
,
Sarmah
,
N.
,
Luo
,
X.
,
Reddy
,
K. S.
, and
Mallick
,
T. K.
,
2013
, “
Opportunities and Challenges in Micro- and Nano-Technologies for Concentrating Photovoltaic Cooling: A Review
,”
Renewable Sustainable Energy Rev.
,
20
, pp.
595
610
.10.1016/j.rser.2012.11.051
5.
Tseng
,
Y. S.
,
Fu
,
H. H.
,
Hung
,
T.-C.
, and
Pei
,
B.-S.
,
2007
, “
An Optimal Parametric Design to Improve Chip Cooling
,”
Appl. Therm. Eng.
,
27
(
11–12
), pp.
1823
1831
.10.1016/j.applthermaleng.2007.01.012
6.
Micheli
,
L.
,
Reddy
,
K. S.
, and
Mallick
,
T. K.
,
2016
, “
Thermal Effectiveness and Mass Usage of Horizontal Micro-Fins Under Natural Convection
,”
Appl. Therm. Eng.
,
97
, pp.
39
47
.10.1016/j.applthermaleng.2015.09.042
7.
An
,
B. H.
,
Kim
,
H. J.
, and
Kim
,
D. K.
,
2012
, “
Nusselt Number Correlation for Natural Convection From Vertical Cylinders With Vertically Oriented Plate Fins
,”
Exp. Therm. Fluid Sci.
,
41
, pp.
59
66
.10.1016/j.expthermflusci.2012.03.010
8.
Mahmoud
,
S.
,
Al-Dadah
,
R.
,
Aspinwall
,
D. K.
,
Soo
,
S. L.
, and
Hemida
,
H.
,
2011
, “
Effect of Micro Fin Geometry on Natural Convection Heat Transfer of Horizontal Microstructures
,”
Appl. Therm. Eng.
,
31
(
5
), pp.
627
633
.10.1016/j.applthermaleng.2010.09.017
9.
Sertkaya
,
A. A.
,
Ozdemir
,
M.
, and
Canli
,
E.
,
2021
, “
Effects of Pin Fin Height, Spacing and Orientation to Natural Convection Heat Transfer for Inline Pin Fin and Plate Heat Sinks by Experimental Investigation
,”
Int. J. Heat Mass Transfer
,
177
, p.
121527
.10.1016/j.ijheatmasstransfer.2021.121527
10.
Su
,
Y.
, and
Davidson
,
J. H.
,
2021
, “
A Non-Uniform Stretched Mesh Scheme for Non-Dimensional Lattice Boltzmann Simulations of Natural Convective Flow and Heat Transfer
,”
Int. Commun. Heat Mass Transfer
,
122
, p.
105137
.10.1016/j.icheatmasstransfer.2021.105137
11.
Pulavarthy
,
R. A.
,
Alam
,
M. T.
, and
Haque
,
M. A.
,
2014
, “
Effect of Heated Zone Size on Micro and Nanoscale Convective Heat Transfer
,”
Int. Commun. Heat Mass Transfer
,
52
, pp.
56
60
.10.1016/j.icheatmasstransfer.2014.01.016
12.
Joo
,
Y.
, and
Kim
,
S. J.
,
2015
, “
Comparison of Thermal Performance Between Plate-Fin and Pin-Fin Heat Sinks in Natural Convection
,”
Int. J. Heat Mass Transfer
,
83
, pp.
345
356
.10.1016/j.ijheatmasstransfer.2014.12.023
13.
Gad-el-Hak
,
M.
,
2003
, “Comments on ‘Critical View on New Results in Micro-Fluid Mechanics,’”
Int. J. Heat Mass Transfer
,
46
(
20
), pp.
3941
3945
.10.1016/S0017-9310(03)00191-1
14.
McNamara
,
G. R.
, and
Zanetti
,
G.
,
1988
, “
Use of the Boltzmann Equation to Simulate Lattice-Gas Automata
,”
Phys. Rev. Lett.
,
61
(
20
), pp.
2332
2335
.10.1103/PhysRevLett.61.2332
15.
Chen
,
H.
,
Chen
,
S.
, and
Matthaeus
,
W. H.
,
1992
, “
Recovery of the Navier-Stokes Equations Using a Lattice-Gas Boltzmann Method
,”
Phys. Rev. A
,
45
(
8
), pp.
R5339
R5342
.10.1103/PhysRevA.45.R5339
16.
Qian
,
Y. H.
,
d'Humières
,
D.
, and
Lallemand
,
P.
,
1992
, “
Lattice BGK Models for Navier-Stokes Equation
,”
Europhys. Lett.
,
17
(
6
), pp.
479
484
.10.1209/0295-5075/17/6/001
17.
Succi
,
S.
,
2002
, “
Mesoscopic Modeling of Slip Motion at Fluid-Solid Interfaces With Heterogeneous Catalysis
,”
Phys. Rev. Lett.
,
89
(
6
), p.
064502
.10.1103/PhysRevLett.89.064502
18.
Ansumali
,
S.
, and
Karlin
,
I. V.
,
2002
, “
Kinetic Boundary Conditions in the Lattice Boltzmann Method
,”
Phys. Rev. E
,
66
(
2
), p.
026311
.10.1103/PhysRevE.66.026311
19.
Guo
,
Z.
,
Zhao
,
T. S.
, and
Shi
,
Y.
,
2006
, “
Physical Symmetry, Spatial Accuracy, and Relaxation Time of the Lattice Boltzmann Equation for Microgas Flows
,”
J. Appl. Phys.
,
99
(
7
), p.
074903
.10.1063/1.2185839
20.
Tang
,
G. H.
,
Zhang
,
Y. H.
,
Gu
,
X. J.
, and
Emerson
,
D. R.
,
2008
, “
Lattice Boltzmann Modelling Knudsen Layer Effect in Non-Equilibrium Flows
,”
EPL (Europhys. Lett.)
,
83
(
4
), p.
40008
.10.1209/0295-5075/83/40008
21.
Alexander
,
F. J.
,
Chen
,
S.
, and
Sterling
,
J. D.
,
1993
, “
Lattice Boltzmann Thermohydrodynamics
,”
Phys. Rev. E
,
47
(
4
), pp.
R2249
R2252
.10.1103/PhysRevE.47.R2249
22.
Shan
,
X.
,
1997
, “
Simulation of Rayleigh-Bénard Convection Using a Lattice Boltzmann Method
,”
Phys. Rev. E
,
55
(
3
), pp.
2780
2788
.10.1103/PhysRevE.55.2780
23.
He
,
X.
,
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit
,”
J. Comput. Phys.
,
146
(
1
), pp.
282
300
.10.1006/jcph.1998.6057
24.
Guo
,
Z.
,
Shi
,
B.
, and
Zheng
,
C.
,
2011
, “
Velocity Inversion of Micro Cylindrical Couette Flow: A Lattice Boltzmann Study
,”
Comput. Math. Appl.
,
61
(
12
), pp.
3519
3527
.10.1016/j.camwa.2010.01.022
25.
Liu
,
Z.
, and
Wu
,
H.
,
2016
, “
Numerical Modeling of Liquid–Gas Two-Phase Flow and Heat Transfer in Reconstructed Porous Media at Pore Scale
,”
Int. J. Hydrogen Energy
,
41
(
28
), pp.
12285
12292
.10.1016/j.ijhydene.2016.05.025
26.
Tariq
,
A.
,
Li
,
P.
,
Xu
,
A.
, and
Liu
,
Z.
,
2020
, “
A Correlation for Nusselt Number of Slip Gas Flow in Confined Porous Media
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
9
), p.
092702
.10.1115/1.4047514
27.
Zhang
,
Y.
,
Xie
,
G.
, and
Karimipour
,
A.
,
2020
, “
Comprehensive Analysis on the Effect of Asymmetric Heat Fluxes on Microchannel Slip Flow and Heat Transfer Via a Lattice Boltzmann Method
,”
Int. Commun. Heat Mass Transfer
,
118
, p.
104856
.10.1016/j.icheatmasstransfer.2020.104856
28.
Tariq
,
A.
, and
Liu
,
Z.
,
2021
, “
A Pore-Scale Analysis for Friction Factor and Permeability in Confined Porous Medium With LB Method
,”
Int. Commun. Heat Mass Transfer
,
127
, p.
105559
.10.1016/j.icheatmasstransfer.2021.105559
29.
Tariq
,
A.
, and
Liu
,
Z.
,
2022
, “
Heat Transfer and Friction Factor Correlations for Slip Gaseous Fluid Flow in Confined Porous Medium With Pore-Scale LBM Modelling
,”
Int. J. Therm. Sci.
,
173
, p.
107382
.10.1016/j.ijthermalsci.2021.107382
30.
Peng
,
Y.
,
Shu
,
C.
, and
Chew
,
Y. T.
,
2003
, “
Simplified Thermal Lattice Boltzmann Model for Incompressible Thermal Flows
,”
Phys. Rev. E
,
68
(
2
), p.
026701
.10.1103/PhysRevE.68.026701
31.
Guo
,
Z.
,
Zheng
,
C.
,
Shi
,
B.
, and
Zhao
,
T. S.
,
2007
, “
Thermal Lattice Boltzmann Equation for Low Mach Number Flows: Decoupling Model
,”
Phys. Rev. E
,
75
(
3
), p.
036704
.10.1103/PhysRevE.75.036704
32.
Dixit
,
H. N.
, and
Babu
,
V.
,
2006
, “
Simulation of High Rayleigh Number Natural Convection in a Square Cavity Using the Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), pp.
727
739
.10.1016/j.ijheatmasstransfer.2005.07.046
33.
Jeong
,
H. K.
,
Yoon
,
H. S.
,
Ha
,
M. Y.
, and
Tsutahara
,
M.
,
2010
, “
An Immersed Boundary-Thermal Lattice Boltzmann Method Using an Equilibrium Internal Energy Density Approach for the Simulation of Flows With Heat Transfer
,”
J. Comput. Phys.
,
229
(
7
), pp.
2526
2543
.10.1016/j.jcp.2009.12.002
34.
Li
,
L.
,
Mei
,
R.
, and
Klausner
,
J. F.
,
2014
, “
Heat Transfer Evaluation on Curved Boundaries in Thermal Lattice Boltzmann Equation Method
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
136
(
1
), p.
012403
.10.1115/1.4025046
35.
Alomar
,
O. R.
,
Basher
,
N. M.
, and
Yousif
,
A. A.
,
2021
, “
Natural Convection Heat Transfer From a Bank of Orthogonal Heated Plates Embedded in a Porous Medium Using LTNE Model: A Comparison Between In-Line and Staggered Arrangements
,”
Int. J. Therm. Sci.
,
160
, p.
106692
.10.1016/j.ijthermalsci.2020.106692
36.
Guo
,
Z.
, and
Zhao
,
T. S.
,
2005
, “
A Lattice Boltzmann Model for Convection Heat Transfer in Porous Media
,”
Numer. Heat Transfer, Part B
,
47
(
2
), pp.
157
177
.10.1080/10407790590883405
37.
Gao
,
D.
,
Chen
,
Z.
, and
Chen
,
L.
,
2014
, “
A Thermal Lattice Boltzmann Model for Natural Convection in Porous Media Under Local Thermal Non-Equilibrium Conditions
,”
Int. J. Heat Mass Transfer
,
70
, pp.
979
989
.10.1016/j.ijheatmasstransfer.2013.11.050
38.
Xu
,
H. T.
,
Wang
,
T. T.
,
Qu
,
Z. G.
,
Chen
,
J.
, and
Li
,
B. B.
,
2017
, “
Lattice Boltzmann Simulation of the Double Diffusive Natural Convection and Oscillation Characteristics in an Enclosure Filled With Porous Medium
,”
Int. Commun. Heat Mass Transfer
,
81
, pp.
104
115
.10.1016/j.icheatmasstransfer.2016.12.001
39.
Lallemand
,
P.
, and
Luo
,
L. S.
,
2000
, “
Theory of the Lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability
,”
Phys. Rev. E
,
61
(
6
), pp.
6546
6562
.10.1103/PhysRevE.61.6546
40.
d'Humières
,
D.
,
Ginzburg
,
I.
,
Krafczyk
,
M.
,
Lallemand
,
P.
, and
Luo
,
L. S.
,
2002
, “
Multiple-Relaxation-Time Lattice Boltzmann Models in Three Dimensions
,”
Philos. Trans. R. Soc. London, Ser. A
,
360
(
1792
), pp.
437
451
.10.1098/rsta.2001.0955
41.
Peng
,
C.
,
Min
,
H.
,
Guo
,
Z.
, and
Wang
,
L. P.
,
2016
, “
A Hydrodynamically-Consistent MRT Lattice Boltzmann Model on a 2D Rectangular Grid
,”
J. Comput. Phys.
,
326
, pp.
893
912
.10.1016/j.jcp.2016.09.031
42.
Liu
,
Z.
,
Mu
,
Z.
, and
Wu
,
H.
,
2019
, “
A New Curved Boundary Treatment for LBM Modeling of Thermal Gaseous Microflow in the Slip Regime
,”
Microfluid. Nanofluid.
,
23
(
2
), p.
27
.10.1007/s10404-019-2192-3
43.
Liu
,
Z.
,
Mu
,
Z.
, and
Wu
,
H.
,
2019
, “
Numerical Modeling of Slip Flow and Heat Transfer Over Microcylinders With Lattice Boltzmann Method
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
4
), p.
042401
.10.1115/1.4042770
44.
Peng
,
Y.
,
Chew
,
Y. T.
, and
Shu
,
C.
,
2003
, “
Numerical Simulation of Natural Convection in a Concentric Annulus Between a Square Outer Cylinder and a Circular Inner Cylinder Using the Taylor-Series-Expansion and Least-Squares-Based Lattice Boltzmann Method
,”
Phys. Rev. E
,
67
(
2
), p.
026701
.10.1103/PhysRevE.67.026701
You do not currently have access to this content.