Abstract

Sublimation heat transfer occurs in a wide range of engineering processes, such as accelerated freeze drying (AFD), energy storage, and food technology. Particularly in the microwave AFD process, preservation of material with the least possible energy consumption is desirable. In connection with this, it is of interest to analyze the effect of temperature/concentration dependent heat/mass transfer properties. Given the limited literature available on sublimation, there is a general lack of physical understanding of this particular problem. The present work analyzes the nonlinear sublimation process driven by convective heat/mass transfer and evaporation of water vapor using the Legendre wavelet collocation method (LWCM). Results from the present work are shown to be in excellent agreement with the exact solution of the special case of a linear problem. Further, the present numerical technique shows good agreement with finite difference method in case of a completely nonlinear model. The model is used for a comprehensive investigation of the impact of the problem parameters, on the rate of sublimation. It is found that the sublimation rate increases with increasing values of β1 and decreasing values of β2. The impact of other dimensionless problem parameters such as Péclet numbers Pe1 and Pem, convection due to mass transfer of water vapor β, latent heat of sublimation l0 and Luikov number Lu on sublimation process is also discussed in detail. These observations offer a comprehensive theoretical and mathematical understanding of sublimation heat/mass transfer for improving the performance and efficiency of freeze-drying and related engineering processes.

References

1.
Reddy
,
Y. D.
,
Mebarek-Oudina
,
F.
,
Goud
,
B. S.
, and
Ismail
,
A. I.
,
2022
, “
Radiation, Velocity and Thermal Slips Effect Toward Mhd Boundary Layer Flow Through Heat and Mass Transport of Williamson Nanofluid With Porous Medium
,”
Arabian J. Sci. Eng.
,
47
, pp.
16355
16369
.10.1007/s13369-022-06825-2
2.
Hindmarsh
,
R. C. A.
,
Van Der Wateren
,
F. M.
, and
Verbers
,
A. L. L. M.
,
1998
, “
Sublimation of Ice Through Sediment in Beacon Valley, Antarctica
,”
Geografiska Annaler: Ser. A, Phys. Geography
,
80
, pp.
209
219
.10.1111/j.0435-3676.1998.00038.x
3.
Tung
,
H. S.
,
Guan
,
Z. Y.
,
Liu
,
T. Y.
, and
Chen
,
H. Y.
,
2018
, “
Vapor Sublimation and Deposition to Build Porous Particles and Composites
,”
Nat. Commun.
,
9
, p.
2564
.10.1038/s41467-018-04975-2
4.
Mandal
,
S.
, and
Kulkarni
,
B. D.
,
2011
, “
Separation Strategies for Processing of Dilute Liquid Streams
,”
Int. J. Chem. Eng.
,
2011
, p.
659012
.10.1155/2011/659012
5.
Wang
,
W.
,
Yang
,
J.
,
Hua
,
D.
,
Hua
,
Y.
,
Wanga
,
S.
, and
G
,
C.
,
2018
, “
Experimental and Numerical Investigations on Freeze-Drying of Porous Media With Prebuilt Porosity
,”
Chem. Phys. Lett.
,
700
, pp.
80
87
.10.1016/j.cplett.2018.04.008
6.
Srikiatden
,
J.
,
Robertsand
,
J. S.
,
D
,
H.
,
Hua
,
Y.
,
Wanga
,
S.
, and
Chen
,
S.
,
2007
, “
Moisture Transfer in Solid Food Materials:A Review of Mechanisms, Models, and Measurements
,”
Int. J. Food Prop.
,
10
(
4
), pp.
739
777
.10.1080/10942910601161672
7.
Upadhyay
,
S.
, and
Rai
,
K. N.
,
2018
, “
A New Iterative Least Square Chebyshev Wavelet Galerkin Fem Applied to Dual Phase Lag Model on Microwave Drying of Foods
,”
Int. J. Therm. Sci.
,
139
, pp.
217
231
.10.1016/j.ijthermalsci.2019.01.035
8.
Jumikis
,
A. R.
,
1967
, “
Upward Migration of Soil Moisture by Various Mechanisms Upon Freezing
,”
Phys. Snow Ice: Proc.
,
1
(
2
), pp.
1387
1399
.http://hdl.handle.net/2115/20388
9.
Rani
,
P.
, and
Tripathy
,
P. P.
,
2020
, “
Modelling of Moisture Migration During Convective Drying of Pineapple Slice Considering Non-Isotropic Shrinkage and Variable Transport Properties
,”
J. Food Sci. Technol.
,
57
, p.
3748
.10.1007/s13197-020-04407-4
10.
Labuza
,
T. P.
, and
Hyman
,
C. R.
,
1998
, “
Modelling of Moisture Migration During Convective Drying of Pineapple Slice Considering Non-Isotropic Shrinkage and Variable Transport Properties
,”
Trends Food Sci. Technol.
,
9
(
2
), pp.
47
55
.10.1016/S0924-2244(98)00005-3
11.
Singh
,
A. K.
,
Singh
,
R.
, and
Chaudhary
,
D. R.
,
1999
, “
Heat Conduction and Moisture Migration in Unsaturated Soils Under Temperature Gradients
,”
Pramana
,
33
, p.
587
.10.1007/BF02845809
12.
Ansar
,
Sukmawaty
,
Murad
,
Ulfa
,
M.
, and
Azis
,
A. D.
,
2022
, “
Using of Exhaust Gas Heat From a Condenser to Increase the Vacuum Freeze-Drying Rate
,”
Results Eng.
,
13
, p.
100317
.10.1016/j.rineng.2021.100317
13.
Alexiades
,
V.
,
1993
,
Mathematical Modeling of Melting and Freezing Processes
,
Taylor and Francis Group
,
New York
.
14.
Speight
,
J. G.
,
2018
,
Reaction Mechanisms in Environmental Engineering: Analysis and Prediction
,
Elsevier
,
Oxford, UK
.
15.
Jambon-Puillet
,
E.
,
Shahidzadeh
,
N.
, and
Bonn
,
D.
,
2018
, “
Singular Sublimation of Ice and Snow Crystals
,”
Nat. Commun.
,
9
, p.
4191
.10.1038/s41467-018-06689-x
16.
Peng
,
S. W.
,
Qin
,
Q. H.
, and
Cheng
,
S. M.
,
1992
, “
Exact Solution of Coupled Heat and Mass Transfer With Double Moving Interfaces in a Porous Half-Space, Part 1: Mass Transfer Controlled by the Fick's Law
,”
Int. J. Energy Res.
,
9
(
5
), pp.
387
400
.10.1002/er.4440160506
17.
Fedorov
,
V. A.
,
Zhukov
,
E. G.
,
Nikolashin
,
S. V.
,
Potolokov
,
V. N.
,
Serov
,
A. V.
, and
Smetanin
,
A. V.
,
2001
, “
Sublimation Purification of Crude Arsenic Recovered From Nonferrous Waste
,”
Int. J. Energy Res.
,
37
, pp.
1011
1016
.10.1023/A:1012370808738
18.
Chaurasiya
,
V.
,
Chaudhary
,
R. K.
,
Wakif
,
A.
, and
Singh
,
J.
,
2022
, “
A One-Phase Stefan Problem With Size-Dependent Thermal Conductivity and Moving Phase Change Material Under the Most Generalized Boundary Condition
,” Waves Random Complex Media.
19.
Chaurasiya
,
V.
,
Chaudhary
,
R. K.
,
Awad
,
M. M.
, and
Singh
,
J.
,
2022
, “
A Numerical Study of a Moving Boundary Problem With Variable Thermal Conductivity and Temperature-Dependent Moving Pcm Under Periodic Boundary Condition
,”
Eur. Phys. J. Plus
,
137
, p.
714
.10.1140/epjp/s13360-022-02927-w
20.
Luikov
,
A. V.
,
1975
, “
Systems of Differential Equations of Heat and Mass Transfer in Capillary-Porous Bodies
,”
Int. J. Heat Mass Transfer
,
18
(
1
), pp.
1
14
.10.1016/0017-9310(75)90002-2
21.
Cho
,
S. H.
,
1975
, “
An Exact Solution of the Coupled Phase Change Problem in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
18
(
10
), pp.
1139
1142
.10.1016/0017-9310(75)90135-0
22.
Mikhailov
,
M. D.
,
1975
, “
Exact Solution of Temperature and Moisture Distributions in a Porous Half-Space With Moving Evaporation Front
,”
Int. J. Heat Mass Transfer
,
18
(
6
), pp.
797
804
.10.1016/0017-9310(75)90209-4
23.
Mikhailov
,
M. D.
,
1976
, “
Exact Solution for Freezing of Humid Porous Half-Space
,”
Int. J. Heat Mass Transfer
,
19
(
6
), pp.
651
655
.10.1016/0017-9310(76)90048-X
24.
Lin
,
S.
,
1981
, “
An Exact Solution of the Sublimation Problem in a Porous Medium
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
103
(
1
), pp.
165
168
.10.1115/1.3244413
25.
Lin
,
S.
,
2002
, “
Exact Solution for Determination of the Maximum Sublimation Rate in a Porous Medium
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
124
(
3
), pp.
525
529
.10.1115/1.1470168
26.
Peng
,
S. W.
,
Qin
,
Q. H.
,
Cheng
,
S. M.
, and
Chen
,
G. Q.
,
1992
, “
Exact Solution of Coupled Heat and Mass Transfer in a Porous-Half Space. part 2: Mass Transfer Controlled by Fick and Darcy Law
,”
Int. J. Energy Res.
,
16
(
5
), pp.
401
411
.10.1002/er.4440160507
27.
Peng
,
S. W.
, and
Chen
,
G. Q.
,
1993
, “
Exact Solution of Coupled Heat and Mass Transfer With Double Moving Interfaces in a Porous-Half Space, Part 3: Effect of Surface Pressure and Permeability on Rates of Sublimation and Desorption
,”
Int. J. Energy Res.
,
17
(
3
), pp.
193
202
.10.1002/er.4440170307
28.
Jitendra
,
Rai
,
K. N.
, and
Singh
,
J.
,
2022
, “
An Analytical Study on Sublimation Process in the Presence of Convection Effect With Heat and Mass Transfer in Porous Medium
,”
Int. Commun. Heat Mass Transfer
,
131
, p.
105833
.10.1016/j.icheatmasstransfer.2021.105833
29.
Zhang
,
C.
,
Bu
,
X.
,
He
,
J.
,
Liu
,
C.
,
Lin
,
G.
, and
Miao
,
J.
,
2020
, “
Simulation of Evaporation and Sublimation Process in Porous Plate Water Sublimator Based on a Reduced Cfd Model
,”
Int. J. Heat Mass Transfer
,
154
, p.
119787
.10.1016/j.ijheatmasstransfer.2020.119787
30.
Wang
,
Z. H.
, and
Shi
,
M. H.
,
1998
, “
The Effects of Sublimation-Condensation Region on Heat and Mass Transfer During Microwave Freeze Drying
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
120
(
3
), pp.
654
660
.10.1115/1.2824333
31.
Jafari
,
H.
,
Hosseinzadeh
,
H.
,
Gholami
,
M. R.
, and
Ganj
,
D. D.
,
2017
, “
Application of Homotopy Perturbation Method for Heat and Mass Transfer in the Two-Dimensional Unsteady Flow Between Parallel Plates
,”
Int. J. Appl. Comput. Math.
,
3
, pp.
1677
1688
.10.1007/s40819-016-0253-9
32.
Parhizi
,
M.
, and
Jain
,
A.
,
2019
, “
Solution of the Phase Change Stefan Problem With Time-Dependent Heat Flux Using Perturbation Method
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
2
), p.
024503
.10.1115/1.4041956
33.
Singh
,
J.
,
Jitendra
., and
Rai
,
K. N.
,
2020
, “
Legendre Wavelet Based Numerical Solution of Variable Latent Heat Moving Boundary Problem
,”
Math. Comput. Simul.
,
178
, pp.
485
500
.10.1016/j.matcom.2020.06.020
34.
Chaurasiya
,
V.
,
Kumar
,
D.
,
Rai
,
K. N.
, and
Singh
,
J.
,
2020
, “
A Computational Solution of a Phase-Change Material in the Presence of Convection Under the Most Generalized Boundary Condition
,”
Therm. Sci. Eng. Prog.
,
20
, p.
100664
.10.1016/j.tsep.2020.100664
35.
Djebali
,
R.
,
Mebarek-Oudina
,
F.
, and
Rajashekhar
,
C.
,
2021
, “
Similarity Solution Analysis of Dynamic and Thermal Boundary Layers: Further Formulation Along a Vertical Flat Plate
,”
Phys. Scr.
,
96
(
8
), p.
085206
.10.1088/1402-4896/abfe31
36.
Bollati
,
J.
,
Semitiel
,
J.
, and
Tarzia
,
D. A.
,
2018
, “
Heat Balance Integral Methods Applied to the One-Phase Stefan Problem With a Convective Boundary Condition at the Fixed Face
,”
Appl. Math. Computation
,
331
, pp.
1
19
.10.1016/j.amc.2018.02.054
37.
Hayashi
,
Y.
,
Komori
,
T.
, and
Katayama
,
K.
,
1975
, “
Analytical and Experimental Investigation of Self-Freezing
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
73
(
3
), pp.
321
325
.10.1115/1.3450373
38.
Chaurasiya
,
V.
, and
Singh
,
J.
,
2022
, “
An Analytical Study of Coupled Heat and Mass Transfer Freeze-Drying With Convection in a Porous Half Body: A Moving Boundary Problem
,”
J. Energy Storage
,
55
, p.
105394
.10.1016/j.est.2022.105394
39.
Swain
,
K.
,
Mahanthesh
,
B.
, and
Mebarek-Oudina
,
F.
,
2021
, “
Heat Transport and Stagnation-Point Flow of Magnetized Nanoliquid With Variable Thermal Conductivity, Brownian Moment, and Thermophoresis Aspects
,”
Heat Transfer
,
50
(
1
), pp.
754
767
.10.1002/htj.21902
40.
Chaurasiya
,
V.
,
Rai
,
K. N.
, and
Singh
,
J.
,
2022
, “
Heat Transfer Analysis for the Solidification of a Binary Eutectic System Under Imposed Movement of the Material
,”
J. Therm. Anal. Calorim.
,
147
, pp.
3229
3246
.10.1007/s10973-021-10614-8
41.
Chaurasiya
,
V.
,
Rai
,
K. N.
, and
Singh
,
J.
,
2021
, “
A Study of Solidification on Binary Eutectic System With Moving Phase Change Material
,”
Therm. Sci. Eng. Prog.
,
25
, p.
101002
.10.1016/j.tsep.2021.101002
42.
Asogwa
,
K. K.
,
Mebarek-Oudina
,
F.
, and
Animasaun
,
I. L.
,
2022
, “
Comparative Investigation of Water-Based al2o3 Nanoparticles Through Water-Based Cuo Nanoparticles Over an Exponentially Accelerated Radiative Riga Plate Surface Via Heat Transport
,”
Arabian J. Sci. Eng.
,
47
, pp.
8721
8738
.10.1007/s13369-021-06355-3
43.
Chaurasiya
,
V.
,
Kumar
,
D.
,
Rai
,
K. N.
, and
Singh
,
J.
,
2022
, “
Heat Transfer Analysis Describing Freezing of a Eutectic System by a Line Heat Sink With Convection Effect in Cylindrical Geometry
,”
Z. Für Naturforsch. A
,
77
(
6
), pp.
589
598
.10.1515/zna-2021-0320
44.
Chabani
,
I.
,
Mebarek-Oudina
,
F.
, and
Ismail
,
A. A. I.
,
2022
, “
Mhd Flow of a Hybrid Nano-Fluid in a Triangular Enclosure With Zigzags and an Elliptic Obstacle
,”
Micromachines
,
13
(
2
), p.
224
.10.3390/mi13020224
45.
Asogwa
,
K. K.
,
Goud
,
B. S.
,
Reddy
,
Y. D.
, and
Ibe
,
A. A.
,
2022
, “
Suction Effect on the Dynamics of Emhd Casson Nanofluid Over an Induced Stagnation Point Flow of Stretchable Electromagnetic Plate With Radiation and Chemical Reaction
,”
Results Eng.
,
15
, p.
100518
.10.1016/j.rineng.2022.100518
46.
Kumar
,
A.
,
Singh
,
A.
, and
Rajeev
,
2020
, “
A Moving Boundary Problem With Variable Specific Heat and Thermal Conductivity
,”
J. King Saud Univ.-Sci.
,
31
(
1
), pp.
384
389
.10.1016/j.jksus.2018.05.028
47.
Raghavan
,
G. S. V.
,
Tulasidas
,
T. N.
,
Sablani
,
S. S.
, and
Ramaswamy
,
H. S.
,
1995
, “
A Method of Determination of Concentration Dependent Effective Moisture Diffusivity
,”
Drying Technol.
,
13
, pp.
1477
1488
.10.1080/07373939508917034
48.
Warke
,
A. S.
,
Ramesh
,
K.
,
Mebarek-Oudina
,
F.
, and
Abidi
,
A.
,
2022
, “
Numerical Investigation of the Stagnation Point Flow of Radiative Magnetomicropolar Liquid Past a Heated Porous Stretching Sheet
,”
J. Therm. Anal. Calorim.
,
147
, pp.
6901
6912
.10.1007/s10973-021-10976-z
49.
Hassan
,
M.
,
Mebarek-Oudina
,
F.
,
Faisal
,
A.
,
Ghafar
,
A.
, and
Ismail
,
A. I.
,
2022
, “
Thermal Energy and Mass Transport of Shear Thinning Fluid Under Effects of Low to High Shear Rate Viscosity
,”
Int. J. Thermofluids
,
15
, p.
100176
.10.1016/j.ijft.2022.100176
50.
Razzaghi
,
M.
, and
Yousefi
,
S.
,
2001
, “
The Legendre Wavelets Operational Matrix of Integration
,”
Int. J. Syst. Sci.
,
32
(
4
), pp.
495
502
.10.1080/00207720120227
51.
Ray
,
S. S.
, and
Gupta
,
A. K.
,
2017
, “
Two-Dimensional Legendre Wavelet Method for Travelling Wave Solutions of Time-Fractional Generalized Seventh Order Kdv Equation
,”
Comput. Math. Appl.
,
73
(
6
), pp.
1118
1133
.10.1016/j.camwa.2016.06.046
52.
Kumar
,
D.
,
Upadhyay
,
S.
,
Singh
,
S.
, and
Rai
,
K. N.
,
2017
, “
Legendre Wavelet Collocation Solution for System of Linear and Nonlinear Delay Differential Equations
,”
Int. J. Appl. Comput. Math.
,
3
, pp.
295
310
.10.1007/s40819-017-0356-y
53.
Jitendra
,
Chaurasiya
,
V.
,
Rai
,
K. N.
, and
Singh
,
J.
,
2022
, “
Legendre Wavelet Residual Approach for Moving Boundary Problem With Variable Thermal Physical Properties
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
23
, pp.
957
970
.10.1515/ijnsns-2019-0076
54.
Upadhyay
,
S.
,
Kumar
,
D.
,
Singh
,
S.
, and
Rai
,
K. N.
,
2015
, “
Numerical Solution of Two Point Boundary Value Problems by Wavelet Galerkin Method
,”
Int. J. Appl. Math. Res.
,
4
(
4
), pp.
496
512
.10.14419/ijamr.v4i4.4748
55.
Jain
,
A.
, and
Parhizi
,
M.
,
2021
, “
Conditionally Exact Closed-Form Solution for Moving Boundary Problems in Heat and Mass Transfer in the Presence of Advection
,”
Int. J. Heat Mass Transfer
,
180
, p.
121802
.10.1016/j.ijheatmasstransfer.2021.121802
56.
Chaudhary
,
R. K.
,
Chaurasiya
,
V.
, and
Singh
,
J.
,
2022
, “
Numerical Estimation of Temperature Response With Step Heating of a Multi-Layer Skin Under the Generalized Boundary Condition
,”
J. Therm. Biol.
,
108
, p.
103278
.10.1016/j.jtherbio.2022.103278
57.
Chaudhary
,
R. K.
,
Chaurasiya
,
V.
, and
Singh
,
J.
,
2022
, “
A Numerical Study on the Thermal Response in Multi-Layer of Skin Tissue Subjected to Heating and Cooling Procedures
,”
Eur. Phys. J. Plus
,
137
, p.
120
.10.1140/epjp/s13360-021-02322-x
58.
Chaudhary
,
R. K.
, and
Singh
,
J.
,
2022
, “
Numerical Analysis of Thermal Response on a Non-Linear Model of Multi-Layer Skin Under Heating and Cooling Processes
,”
Int. Commun. Heat Mass Transfer
,
139
, p.
106467
.10.1016/j.icheatmasstransfer.2022.106467
You do not currently have access to this content.