Abstract

A comprehensive understanding of the tip heat transfer characteristics is important to the blade tip design. In this work, the heat transfer coefficient (h) data of several multicavity tips was measured using a steady-state method with an infrared camera. The multicavity tips with different cavity numbers were developed by placing ribs into the traditional squealer tip. All the measurements were conducted in a low-speed linear cascade. Moreover, to gain insight into the heat transfer characteristics of the multicavity tips, computational simulations verified by measurements were implemented to acquire the detailed flow structure of these tips. Measurement results show that the h distributions of the multicavity tips are changed by the ribs. Due to the reattachment of the leakage flow, additional high-h regions are observed downstream of the rib. And the h values in the suction-side rim corner increase, especially at near the trailing-edge. A low-h region is found in the corner upstream of the rib. Furthermore, adopting a high freestream turbulence level would enhance the heat transfer. The augment of h values on the tip front portion is more evident than that on the midto-rear part. The validation in a turbine stage indicates that the present data obtained in the stationary condition still could reveal the heat transfer characteristics of these multicavity tips in a rotating condition.

References

1.
Bunker
,
R. S.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
AIAA J. Propuls. Power
,
22
(
2
), pp.
271
285
.10.2514/1.11818
2.
Azad
,
G. S.
,
Han
,
J. C.
, and
Boyle
,
R. J.
,
2000
, “
Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
122
(
4
), pp.
725
732
.10.1115/1.1311284
3.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficients on the Squealer Tip and Near Squealer Tip Regions of a Gas Turbine Blade
,”
ASME J. Heat Transfer-Trans. ASME
,
125
(
4
), pp.
669
677
.10.1115/1.1571849
4.
Azad
,
G. S.
,
Han
,
J. C.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
,
2002
, “
Effect of Squealer Geometry Arrangement on a Gas Turbine Blade Tip Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
124
(
3
), pp.
452
459
.10.1115/1.1471523
5.
Jung
,
J. S.
,
Kim
,
I.
,
Joo
,
J. S.
, and
Lee
,
S. W.
, “
Experimental Study on Aerodynamic Loss and Heat Transfer for Various Squealer Tips
,”
ASME J. Turbomach.
,
143
(
5
), p.
051002
.10.1115/1.4049920
6.
Saxena
,
V.
, and
Ekkad
,
S. V.
,
2004
, “
Effect of Squealer Geometry on Tip Flow and Heat Transfer for a Turbine Blade in a Low Speed Cascade
,”
ASME J. Heat Transfer-Trans. ASME
,
126
(
4
), pp.
546
553
.10.1115/1.1777580
7.
Wang
,
J.
,
Sundén
,
B.
,
Zeng
,
M.
, and
Wang
,
Q. W.
,
2012
, “
Influence of Different Rim Widths and Blowing Ratios on Film Cooling Characteristics for a Blade Tip
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
6
), p.
061701
.10.1115/1.4006017
8.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficients and Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
ASME J. Heat Transfer-Trans. ASME
,
125
(
3
), pp.
494
502
.10.1115/1.1565096
9.
Ahn
,
J.
,
Mhetras
,
S.
, and
Han
,
J. C.
,
2005
, “
Film-Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure-Sensitive Paint
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
5
), pp.
521
530
.10.1115/1.1909208
10.
Lee
,
W. S.
,
Kim
,
D. H.
,
Park
,
J. S.
,
Kwak
,
J. S.
, and
Chung
,
J. T.
,
2014
, “
Effect of Triangular Grooved Tip on Blade Tip Region Heat Transfer
,”
AIAA J. Thermophys. Heat Transfer
,
28
(
2
), pp.
226
235
.10.2514/1.T4254
11.
Jeong
,
J. Y.
,
Kim
,
W.
,
Kwak
,
J. S.
, and
Park
,
J. S.
,
2019
, “
Heat Transfer Coefficient and Film Cooling Effectiveness on the Partial Cavity Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
141
(
7
), p.
071007
.10.1115/1.4042647
12.
Maral
,
H.
,
Alpman
,
E.
,
Kavurmacıoğlu
,
L.
, and
Camci
,
C.
,
2019
, “
A Genetic Algorithm Based Aerothermal Optimization of Tip Carving for an Axial Turbine Blade
,”
Int. J. Heat Mass Transfer
,
143
, p.
118419
.10.1016/j.ijheatmasstransfer.2019.07.069
13.
Lavagnoli
,
S.
,
De Maesschalck
,
C.
, and
Paniagua
,
G.
,
2015
, “
Analysis of the Heat Transfer Driving Parameters in Tight Rotor Blade Tip Clearances
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
1
), p.
011705
.10.1115/1.4031131
14.
Park
,
J. S.
,
Lee
,
S. H.
,
Lee
,
W. S.
,
Chung
,
J. T.
, and
Kwak
,
J. S.
,
2016
, “
Heat Transfer and Secondary Flow With a Multicavity Gas Turbine Blade Tip
,”
AIAA J. Thermophys. Heat Transfer
,
30
(
1
), pp.
120
129
.10.2514/1.T4541
15.
Du
,
K.
,
Li
,
Z. G.
,
Li
,
J.
, and
Sunden
,
B.
,
2019
, “
Influences of a Multi-Cavity Tip on the Blade Tip and the Over Tip Casing Aerothermal Performance in a High Pressure Turbine Cascade
,”
Appl. Therm. Eng.
,
147
, pp.
347
360
.10.1016/j.applthermaleng.2018.10.093
16.
Park
,
S.
,
Sohn
,
H. S.
,
Cho
,
H. H.
,
Moon
,
H. K.
,
Han
,
Y. S.
, and
Ueda
,
O.
,
2020
, “
Effects of Wakes on Blade Endwall Heat Transfer in High Turbulence Intensity
,”
ASME J. Turbomach.
,
142
(
2
), p.
021002
.10.1115/1.4045335
17.
Bacci
,
T.
,
Picchi
,
A.
,
Lenzi
,
T.
,
Facchini
,
B.
, and
Innocenti
,
L.
,
2021
, “
Effect of Surface Roughness and Inlet Turbulence Intensity on a Turbine Nozzle Guide Vane External Heat Transfer: Experimental Investigation on a Literature Test Case
,”
ASME J. Turbomach.
,
143
(
4
), p.
041006
.10.1115/1.4049917
18.
Azad
,
G. S.
,
Han
,
J. C.
,
Teng
,
S. Y.
, and
Boyle
,
R. J.
,
2000
, “
Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
122
(
4
), pp.
717
724
.10.1115/1.1308567
19.
Bunker
,
R. S.
,
Bailey
,
J. C.
, and
Ameri
,
A. A.
,
2000
, “
Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine: Part 1—Experimental Results
,”
ASME J. Turbomach.
,
122
(
2
), pp.
263
271
.10.1115/1.555443
20.
Wang
,
Z. D.
,
Liu
,
Z. F.
, and
Feng
,
Z. P.
,
2015
, “
Influence of Mainstream Turbulence Intensity on Heat Transfer Characteristics of a High Pressure Turbine Stage With Inlet Hot Streak
,”
ASME J. Turbomach.
,
138
(
4
), p.
041005
.10.1115/1.4032062
21.
Zhang
,
Q.
,
He
,
L.
, and
Rawlinson
,
A.
,
2014
, “
Effects of Inlet Turbulence and End-Wall Boundary Layer on Aerothermal Performance of a Transonic Turbine Blade Tip
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
052603
.10.1115/1.4026002
22.
Li
,
F.
,
Jia
,
Z.
,
Wang
,
H. F.
,
Liu
,
Z.
, and
Feng
,
Z. P.
,
2022
, “
Experimental and Numerical Investigations Into the Blade Tip Phantom Cooling Performance
,”
ASME. J. Eng. Gas Turbines Power
,
144
(
7
), p.
071013
.10.1115/1.4054525
23.
Roach
,
P. E.
,
1987
, “
The Generation of nearly isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.10.1016/0142-727X(87)90001-4
24.
Yang
,
X.
,
Zhao
,
Q.
,
Wu
,
H.
,
Hao
,
Z. H.
, and
Feng
,
Z. P.
,
2022
, “
Heat Transfer Measurements of a Turbine Endwall With Engine-Representative Freestream Turbulence and Inlet Swirl
,”
Exp. Heat Transfer
,
35
(
5
), pp.
653
673
.10.1080/08916152.2021.1933651
25.
Jonsson
,
I.
,
Chernoray
,
V.
, and
Dhanasegaran
,
R.
,
2020
, “
Infrared Thermography Investigation of Heat Transfer on Outlet Guide Vanes in a Turbine Rear Structure
,”
Int. J. Turbomach. Propul. Power
,
5
(
3
), p.
23
.10.3390/ijtpp5030023
26.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
27.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
28.
Li
,
F.
,
Jia
,
Z.
,
Zhang
,
W. X.
,
Liu
,
Z.
, and
Feng
,
Z. P.
,
2022
, “
Experimental Comparisons of Film Cooling Performance for the Multi-Cavity Tips at Two Different Tip Gaps
,”
Int. J. Heat Mass Transfer
,
187
, p.
122566
.10.1016/j.ijheatmasstransfer.2022.122566
You do not currently have access to this content.