Abstract

This computational work deals with the optimal design of the thermal ablation treatment of skin cancer, by considering uncertainties in the model parameters. The tumor and other tissues were heated by a laser. Nanoparticles were used to improve the effects of the heating procedure and to promote thermal damage localized in the region containing the tumor. Treatment protocols examined in this work involved one single heating session with different prespecified durations, where the design variables were considered as the volume fraction of nanoparticles in the epidermis and tumor, as well as the time variation of the incident laser fluence rate. The optimal design problems were solved with the Markov Chain Monte Carlo method, by applying a modified version of the Metropolis-Hastings algorithm with sampling by blocks of parameters. The two parameter blocks were given by the properties of the tissues and by the design variables. The prior for the volume fraction of nanoparticles was given by a truncated Gaussian distribution, while a noninformative Gaussian Markov random field prior was used for the time variation of the laser fluence rate. The posterior distributions of the design variables were estimated by taking into account uncertainties in the model parameters and the desired statistical distribution of the thermal damage in the region of interest. The stochastic simulations resulted in optimal thermal damages with small uncertainties, which closely followed their desired statistical distribution functions.

References

1.
WHO
,
2017
, “Radiation: Ultraviolet (UV) Radiation and Skin Cancer,”
World Health Organization
, Geneva, Switzerland, accessed Apr. 21, 2022, https://www.who.int/news-room/q-a-detail/radiation-ultraviolet-(uv)-radiation-and-skin-cancer
2.
Jerant
,
A. F.
,
Johnson
,
J. T.
,
Sheridan
,
C. D.
, and
Caffrey
,
T. J.
,
2000
, “
Early Detection and Treatment of Skin Cancer
,”
Am. Family Phys.
,
62
(
2
), pp.
357
368
.https://pubmed.ncbi.nlm.nih.gov/10929700/
3.
Datta
,
N. R.
,
Ordóñez
,
S. G.
,
Gaipl
,
U. S.
,
Paulides
,
M. M.
,
Crezee
,
H.
,
Gellermann
,
J.
,
Marder
,
D.
,
Puric
,
E.
, and
Bodis
,
S.
,
2015
, “
Local Hyperthermia Combined With Radiotherapy and-/or Chemotherapy: Recent Advances and Promises for the Future
,”
Cancer Treat. Rev.
,
41
(
9
), pp.
742
753
.10.1016/j.ctrv.2015.05.009
4.
Walsh
,
J. T.
,
Van Leeuwen
,
T. G.
,
Jansen
,
E. D.
,
Motamedi
,
M.
, and
Welch
,
A. J.
,
2010
, “
Pulsed Laser Tissue Interaction
,”
Optical-Thermal Response of Laser-Irradiated Tissue
,
A. J.
Welch
, and
M.
van Gemert
, eds.,
Springer
,
Dordrecht
, The Netherlands, pp.
617
649
.
5.
Waynant
,
R. W.
,
2011
,
Lasers in Medicine
,
CRC Press
,
Boca Raton, FL
.
6.
Ganguly
,
M.
,
O'Flaherty
,
R.
,
Sajjadi
,
A.
, and
Mitra
,
K.
,
2015
, “
Chapter 2 - Tissue Response to Short Pulse Laser Irradiation
,”
Heat Transfer and Fluid Flow in Biological Processes
,
S. M.
Becker
, and
A. V.
Kuznetsov
, eds.,
Academic Press
,
Boston, MA
, pp.
43
58
.
7.
Jha
,
S.
,
Sharma
,
P. K.
, and
Malviya
,
R.
,
2016
, “
Hyperthermia: Role and Risk Factor for Cancer Treatment
,”
Achiev. Life Sci.
,
10
(
2
), pp.
161
167
.10.1016/j.als.2016.11.004
8.
Sharma
,
S. K.
,
Shrivastava
,
N.
,
Rossi
,
F.
,
Tung
,
L. D.
, and
Thanh
,
N. T. K.
,
2019
, “
Nanoparticles-Based Magnetic and Photo Induced Hyperthermia for Cancer Treatment
,”
Nano Today
,
29
, p.
100795
.10.1016/j.nantod.2019.100795
9.
Dombrovsky
,
L. A.
,
Timchenko
,
V.
,
Jackson
,
M.
, and
Yeoh
,
G. H.
,
2011
, “
A Combined Transient Thermal Model for Laser Hyperthermia of Tumors With Embedded Gold Nanoshells
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5459
5469
.10.1016/j.ijheatmasstransfer.2011.07.045
10.
Cho
,
S. H.
, and
Krisnan
,
S.
,
2013
,
Cancer Nanotechnology Principles and Applications in Radiation Oncology
,
CRC Press, Taylor & Francis
,
Boca Raton, FL
.
11.
Tuersun
,
P.
, and
Han
,
X.
,
2014
, “
Optimal Dimensions of Gold Nanoshells for Light Backscattering and Absorption Based Applications
,”
J. Quant. Spectrosc. Radiat. Transfer
,
146
, pp.
468
474
.10.1016/j.jqsrt.2013.12.018
12.
Yadel
,
C.
,
Michel
,
A.
,
Casale
,
S.
, and
Fresnais
,
J.
,
2018
, “
Hyperthermia Efficiency of Magnetic Nanoparticles in Dense Aggregates of Cerium Oxide/Iron Oxide Nanoparticles
,”
Appl. Sci.
,
8
(
8
), p.
1241
.10.3390/app8081241
13.
McGoron
,
A. J.
,
2020
, “
Meta-Analysis of Efficacy of Chemotherapy Delivered by Mesoporous Silica Nanoparticles to Tumor-Bearing Mice
,”
Crit. Rev. Biomed. Eng.
,
48
(
6
), pp.
327
418
.10.1615/CritRevBiomedEng.2020035804
14.
Cruz
,
C. C. R.
,
da Silva
,
N. P.
,
Castilho
,
A. V.
,
Favre-Nicolin
,
V. A.
,
Cesar
,
C. L.
,
Orlande
,
H. R. B.
, and
Dos Santos
,
D. S.
,
2020
, “
Synthesis, Characterization and Photothermal Analysis of Nanostructured Hydrides of Pd and PdCeO2
,”
Sci. Rep.
,
10
(
1
), p.
17561
.10.1038/s41598-020-74378-1
15.
Beck
,
J. V.
, and
Arnold
,
K. J.
,
1977
,
Parameter Estimation in Engineering and Science
,
John Wiley & Sons
,
New York
.
16.
Farrell
,
K.
,
Oden
,
J. T.
, and
Faghihi
,
D.
,
2015
, “
A Bayesian Framework for Adaptive Selection, Calibration, and Validation of Coarse-Grained Models of Atomistic Systems
,”
J. Comput. Phys.
,
295
, pp.
189
208
.10.1016/j.jcp.2015.03.071
17.
Lamien
,
B.
,
Orlande
,
H. R. B.
, and
Elicabe
,
G. E.
,
2017
, “
Particle Filter and Approximation Error Model for State Estimation in Hyperthermia
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
1
), p.
12001
.10.1115/1.4034064
18.
Lamien
,
B.
,
Orlande
,
H. R. B.
, and
Eliçabe
,
G. E.
,
2017
, “
Inverse Problem in the Hyperthermia Therapy of Cancer With Laser Heating and Plasmonic Nanoparticles
,”
Inverse Probl. Sci. Eng.
,
25
(
4
), pp.
608
631
.10.1080/17415977.2016.1178260
19.
Lamien
,
B.
,
Varon
,
L. A. B.
,
Orlande
,
H. R. B.
, and
Eliçabe
,
G. E.
,
2017
, “
State Estimation in Bioheat Transfer: A Comparison of Particle Filter Algorithms
,”
Int. J. Numer. Methods Heat Fluid Flow
,
27
(
3
), pp.
615
638
.10.1108/HFF-03-2016-0118
20.
Lamien
,
B.
,
Orlande
,
H. R. B.
,
Eliçabe
,
G. E.
, and
Maurente
,
A. J.
,
2014
, “
State Estimation Problem in the Hyperthermia Treatment of Tumors Loaded With Nanoparticles
,”
Proceedings of the 15th International Heat Transfer Conference, IHTC-15
, Kyoto, Japan, Aug. 10–15, Paper No. IHTC15-8772.
21.
Bermeo Varon
,
L. A.
,
Orlande
,
H. R. B.
, and
Eliçabe
,
G. E.
,
2016
, “
Combined Parameter and State Estimation Problem in a Complex Domain: RF Hyperthermia Treatment Using Nanoparticles
,”
J. Phys. Conf. Ser.
,
745
(
3
), p.
032014
.10.1088/1742-6596/745/3/032014
22.
Varon
,
L. A. B.
,
Orlande
,
H. R. B.
, and
Eliçabe
,
G. E.
,
2016
, “
Combined Parameter and State Estimation in the Radio Frequency Hyperthermia Treatment of Cancer
,”
Numer. Heat Transfer Part A Appl.
,
70
(
6
), pp.
581
594
.10.1080/10407782.2016.1193342
23.
Bermeo Varon
,
L. A.
,
Barreto Orlande
,
H. R.
, and
Eliçabe
,
G. E.
,
2015
, “
Estimation of State Variables in the Hyperthermia Therapy of Cancer With Heating Imposed by Radiofrequency Electromagnetic Waves
,”
Int. J. Therm. Sci.
,
98
, pp.
228
236
.10.1016/j.ijthermalsci.2015.06.022
24.
Lamien
,
B.
,
Rangel Barreto Orlande
,
H.
,
Antonio Bermeo Varón
,
L.
,
Leite Queiroga Basto
,
R.
,
Enrique Eliçabe
,
G.
,
Silva dos Santos
,
D.
, and
Machado Cotta
,
R.
,
2018
, “
Estimation of the Temperature Field in Laser-Induced Hyperthermia Experiments With a Phantom
,”
Int. J. Hyperthermia
,
35
(
1
), pp.
279
290
.10.1080/02656736.2018.1496283
25.
Bermeo Varon
,
L. A.
,
Loiola
,
B. R.
,
da Silva Abreu
,
L. A.
,
Lamien
,
B.
,
da Silva
,
N. P.
,
Orlande
,
H. R. B.
, and
dos Santos
,
D. S.
,
2019
, “
Thermal Effect by Applying Laser Heating in Iron Oxide Nanoparticles Dissolved in Distilled Water
,”
IFMBE Proceedings XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019
,
J.
Henriques
,
N.
Neves
, and
P.
de Carvalho
, eds.,
Springer
,
Cham, Switzerland
, Sept. 26–28, pp.
1239
1245
.
26.
Larreur
,
M.
,
Lamien
,
B.
, and
Orlande
,
H. R. B.
,
2019
, “
Optimization of the Hyperthermia Treatment of a Skin Tumor Containing Nanoparticles
,”
VIII International Conference on Computational Methods for Coupled Problems in Science and Engineering (Coupled Problems 2019)
, Sitges, Spain, June 3–5, pp.
79
–90
.
27.
Kaipio
,
J.
, and
Somersalo
,
E.
,
2005
,
Statistical and Computational Inverse Problems
,
Springer Science & Business Media
,
New York
.
28.
Orlande
,
H.
,
Fudym
,
O.
,
Maillet
,
D.
, and
Cotta
,
R.
,
2011
,
Thermal Measurements and Inverse Techniques
,
Taylor & Francis
,
Boca Raton, FL
.
29.
Gamerman
,
D.
, and
Lopes
,
H. F.
,
2006
,
Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference
,
CRC Press
,
New York
.
30.
Özisik
,
M. N., and
Orlande
,
H. R. B.
,
2021
,
Inverse Heat Transfer: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
.
31.
Bruno
,
A. B.
,
Maurente
,
A.
,
Lamien
,
B.
, and
Orlande
,
H. R. B.
,
2017
, “
Numerical Simulation of Nanoparticles Assisted Laser Photothermal Therapy: A Comparison of the P1-Approximation and Discrete Ordinate Methods
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
2
), pp.
621
630
.10.1007/s40430-016-0553-3
32.
Pennes
,
H. H.
,
1998
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
85
(
1
), pp.
5
34
.10.1152/jappl.1998.85.1.5
33.
Abraham
,
J. P.
, and
Sparrow
,
E. M.
,
2007
, “
A Thermal-Ablation Bioheat Model Including Liquid-to-Vapor Phase Change, Pressure- and Necrosis-Dependent Perfusion, and Moisture-Dependent Properties
,”
Int. J. Heat Mass Transfer
,
50
(
13–14
), pp.
2537
2544
.10.1016/j.ijheatmasstransfer.2006.11.045
34.
Loiola
,
B. R.
,
Orlande
,
H. R.
, and
Dulikravich
,
G. S.
,
2020
, “
Approximate Bayesian Computation Applied to the Identification of Thermal Damage of Biological Tissues Due to Laser Irradiation
,”
Int. J. Therm. Sci.
,
151
, p.
106243
.10.1016/j.ijthermalsci.2019.106243
35.
Star
,
W. M.
,
2011
,
Diffusion Theory of Light Transport, Optical-Thermal Response of Laser Irradiated Tissue
,
A. J.
Welch
, and
J. C. M.
Van Gemert
, eds.,
Springer
,
New York
.
36.
Dombrovsky
,
L. A.
,
Randrianalisoa
,
J. H.
,
Lipiński
,
W.
, and
Baillis
,
D.
,
2011
, “
Approximate Analytical Solution to Normal Emittance of Semi-Transparent Layer of an Absorbing, Scattering, and Refracting Medium
,”
J. Quant. Spectrosc. Radiat. Transfer
,
112
(
12
), pp.
1987
1994
.10.1016/j.jqsrt.2011.04.008
37.
Pearce
,
J. A.
,
2013
, “
Comparative Analysis of Mathematical Models of Cell Death and Thermal Damage Processes
,”
Int. J. Hyperthermia
,
29
(
4
), pp.
262
280
.10.3109/02656736.2013.786140
38.
Pearce
,
J. A.
,
2010
, “
Models for Thermal Damage in Tissues: Processes and Applications
,”
Crit. Rev. Biomed. Eng.
,
38
(
1
), pp.
1
20
.10.1615/CritRevBiomedEng.v38.i1.20
39.
Henriques
,
F. C.
, Jr.
,
1947
, “
Studies of Thermal Injury: V. The Predictability and the Significance of Thermally Induced Rate Processes Leading to Irreversible Epidermal Injury
,”
Arch. Pathol.
,
43
(
5
), pp.
489
502
.
40.
Orlande
,
H. R. B.
,
Lutaif
,
N. A.
, and
Gontijo
,
J. A. R.
,
2019
, “
Estimation of the Kidney Metabolic Heat Generation Rate
,”
Int. J. Numer. Methods Biomed. Eng.
,
35
(
9
), p. e3224.10.1002/cnm.3224
41.
Geweke
,
J.
,
1991
,
Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments
,
Federal Reserve Bank of Minneapolis, Research Department, Minneapolis
,
MN
.
42.
Cui
,
T.
,
2010
, “
Bayesian Calibration of Geothermal Reservoir Models Via Markov Chain Monte Carlo
,” Ph.D. thesis,
University of Auckland
, Auckland, New Zealand.
43.
Geyer
,
C.
,
2011
, “
Introduction to Markov Chain Monte Carlo
,”
Handbook of Markokv Chain Monte Carlo
,
S.
Brooks
,
A.
Gelman
,
G.
Jones
, and
X.
Meng
, eds.,
CRC Press
,
Boca Raton
, FL
.
44.
Prahl
,
S. A.
,
1988
, “
Light Transport in Tissue
,” Ph.D. thesis,
The University of Texas
,
Austin, TX
.
45.
Xu
,
F.
,
Seffen
,
A.
, and
Lu
,
T. J.
,
2008
, “
Temperature-Dependent Mechanical Behaviors of Skin Tissue
,”
IAENG Int. J. Comput. Sci.
,
35
(
1
), IJCS_35_1_13.
46.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
47.
Özisik
,
M. N.
,
Orlande
,
H. R. B.
,
Colaço
,
M.
, and
Cotta
,
R.
,
2017
,
Finite Difference Methods in Heat Transfer
,
CRC Press
,
Boca Raton, FL
.
48.
Wolfram
,
S.
,
2003
,
The Mathematica Book
,
Wolfram Media
,
Cambridge, UK
.
49.
JANKOWSKA
,
M.
, and
SYPNIEWSKA-KAMIŃSKA
,
G.
,
2012
, “
An Interval Finite Difference Method for the Bioheat Transfer Problem Described by the Pennes Equation With Uncertain Parameters
,”
Mech. Control
,
31
(
2
), pp.
77
84
.10.7494/mech.2012.31.2.77
50.
Gowrishankar
,
T. R.
,
Stewart
,
D. A.
,
Martin
,
G. T.
, and
Weaver
,
J. C.
,
2004
, “
Transport Lattice Models of Heat Transport in Skin With Spatially Heterogeneous, Temperature-Dependent Perfusion
,”
BioMedical Eng. Online
,
3
(
1
), p.
42
.10.1186/1475-925X-3-42
51.
Jiang
,
S. C.
,
Ma
,
N.
,
Li
,
H. J.
, and
Zhang
,
X. X.
,
2002
, “
Effects of Thermal Properties and Geometrical Dimensions on Skin Burn Injuries
,”
Burns
,
28
(
8
), pp.
713
717
.10.1016/S0305-4179(02)00104-3
52.
Lormel
,
C.
,
Autrique
,
L.
,
Perez
,
L.
, and
Gillet
,
M.
,
2006
, “
Human Skin Thermal Properties Identification by Periodic Method in the Frequency Domain
,”
IFAC Proceedings Volumes
,
39
(
18
), pp.
183
188
.10.3182/20060920-3-FR-2912.00036
53.
Pirtini Cetingul
,
M.
, and
Herman
,
C.
,
2008
, “
Identification of Skin Lesions From the Transient Thermal Response Using Infrared Imaging Technique
,”
Fifth IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Proceedings of the ISBI
, Paris, France, May 14–17, pp.
1219
1222
.10.1109/ISBI.2008.4541222
54.
Ratovoson
,
D.
,
Huon
,
V.
, and
Jourdan
,
F.
,
2015
, “
A 3D Finite Element Model for Hyperthermia Injury of Blood-Perfused Skin
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
3
), pp.
233
242
.10.1080/10255842.2013.790963
55.
Viglianti
,
B. L.
,
Dewhirst
,
M. W.
,
Abraham
,
J. P.
,
Gorman
,
J. M.
, and
Sparrow
,
E. M.
,
2014
, “
Rationalization of Thermal Injury Quantification Methods: Application to Skin Burns
,”
Burns
,
40
(
5
), pp.
896
902
.10.1016/j.burns.2013.12.005
56.
Kumar
,
D.
, and
Rai
,
K. N.
,
2016
, “
A Study on Thermal Damage During Hyperthermia Treatment Based on DPL Model for Multilayer Tissues Using Finite Element Legendre Wavelet Galerkin Approach
,”
J. Therm. Biol.
,
62
, pp.
170
180
.10.1016/j.jtherbio.2016.06.020
57.
Johnson
,
N. N.
,
Abraham
,
J. P.
,
Helgeson
,
Z. I.
,
Minkowycz
,
W. J.
, and
Sparrow
,
E. M.
,
2011
, “
An Archive of Skin-Layer Thicknesses and Properties and Calculations of Scald Burns With Comparisons to Experimental Observations
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
1
), p.
011003
.10.1115/1.4003610
58.
Loureiro
,
F. S.
,
Wrobel
,
L. C.
, and
Mansur
,
W. J.
,
2012
, “
Solution of Hyperbolic Bioheat Transfer Problems by Numerical Green's Functions: The ExGA-Linear θ Method
,”
J. Braz. Soc. Mech. Sci. Eng.
,
34
(
4
), pp.
459
468
.10.1590/S1678-58782012000400006
59.
Hossain
,
S.
, and
Mohammadi
,
F. A.
,
2016
, “
Tumor Parameter Estimation Considering the Body Geometry by Thermography
,”
Comput. Biol. Med.
,
76
, pp.
80
93
.10.1016/j.compbiomed.2016.06.023
60.
Bashkatov
,
A. N.
,
Genina
,
E. A.
,
Kochubey
,
V. I.
, and
Tuchin
,
V. V.
,
2005
, “
Optical Properties of Human Skin, Subcutaneous and Mucous Tissues in the Wavelength Range From 400 to 2000 Nm
,”
J. Phys. D Appl. Phys.
,
38
(
15
), pp.
2543
2555
.10.1088/0022-3727/38/15/004
61.
Chan
,
E. K.
,
Sorg
,
B.
,
Protsenko
,
D.
,
O'Neil
,
M.
,
Motamedi
,
M.
, and
Welch
,
A. J.
,
1996
, “
Effects of Compression on Soft Tissue Optical Properties
,”
IEEE J. Sel. Top. Quant. Electron.
,
2
(
4
), pp.
943
950
.10.1109/2944.577320
62.
Douven
,
L. F. A.
, and
Lucassen
,
G. W.
,
2000
, “
Retrieval of Optical Properties of Skin From Measurement and Modelling the Diffuse Reflectance
,”
Proc.
SPIE, 3914, epub.10.1117/12.388058
63.
Du
,
Y.
,
Hu
,
X. H.
,
Cariveau
,
M.
,
Ma
,
X.
,
Kalmus
,
G. W.
, and
Lu
,
J. Q.
,
2001
, “
Optical Properties of Porcine Skin Dermis Between 900 Nm and 1500 Nm
,”
Phys. Med. Biol.
,
46
(
1
), pp.
167
181
.10.1088/0031-9155/46/1/312
64.
Meglinski
,
I. V.
, and
Matcher
,
S. J.
,
2002
, “
Quantitative Assessment of Skin Layers Absorption and Skin Reflectance Spectra Simulation in the Visible and Near-Infrared Spectral Regions
,”
Physiol. Meas.
,
23
(
4
), pp.
741
753
.10.1088/0967-3334/23/4/312
65.
Salomatina
,
E.
,
Jiang
,
B.
,
Novak
,
J.
, and
Yaroslavsky
,
A. N.
,
2006
, “
Optical Properties of Normal and Cancerous Human Skin in the Visible and Near-Infrared Spectral Range
,”
J. Biomed. Opt.
,
11
(
6
), p.
064026
.10.1117/1.2398928
66.
Simpson
,
C. R.
,
Kohl
,
M.
,
Essenpreis
,
M.
, and
Cope
,
M.
,
1998
, “
Near-Infrared Optical Properties of Ex Vivo Human Skin and Subcutaneous Tissues Measured Using the Monte Carlo Inversion Technique
,”
Phys. Med. Biol.
,
43
(
9
), pp.
2465
2478
.10.1088/0031-9155/43/9/003
67.
Troy
,
T. L.
, and
Thennadil
,
S. N.
,
2001
, “
Optical Properties of Human Skin in the Near Infrared Wavelength Range of 1000 to 2200 Nm
,”
J. Biomed. Opt.
,
6
(
2
), pp.
167
176
.10.1117/1.1344191
68.
Welch
,
A. J.
, and
Van Gemert
,
M. J. C.
,
2011
,
Optical-Thermal Response of Laser-Irradiated Tissue
,
Springer
,
Netherlands
.
69.
Habash
,
R. W. Y.
,
Bansal
,
R.
,
Krewski
,
D.
, and
Alhafid
,
H. T.
,
2006
, “
Thermal Therapy, Part 1: An Introduction to Thermal Therapy
,”
Crit. Rev. Biomed. Eng.
,
34
(
6
), pp.
459
489
.10.1615/CritRevBiomedEng.v34.i6.20
You do not currently have access to this content.