Abstract

Many upcoming designs of nuclear reactors conceptualize use of supercritical fluids (SCFs) due to certain associated advantages. Supercritical helium (SC-He), supercritical carbon-dioxide (SC-CO2), and supercritical water (SCW) find proposed applications in primary/secondary heat removal cycles in nuclear reactors. The knowledge of heat transfer characteristics of the working fluid is essential prerequisite for its actual application. Similarly, for SCF, heat transfer deterioration (HTD) is an area having much ambiguity and thus has attracted many researchers in the recent past. Still, conclusive guidelines for design applications of SCF are lacking due to dramatic variation of thermos-physical properties of SCF in the pseudo-critical region. In this paper, extensive experimental investigations are undertaken to study HTD of SC-CO2 under natural circulation (NC) system. Experiments conducted at pressures between 7.9 and 12.31 MPa for vertical heater horizontal cooler (VHHC) and vertical heater vertical cooler (VHVC) are reported. Effect of heat flux, operating pressure, and cooler orientation are discussed based on the experimental data generated. Methodologies available in literature for identification of HTD are also examined with the present experimental data. The experimental data are compared with the HTD criteria available in literature and a new criterion for onset of HTD is proposed for vertical flows under natural circulation. Role of buoyancy (Bu) and acceleration (Ac) parameters are also investigated. Noticeable HTD is observed for Bu > 3 × 10−6 whereas Ac is not found to affect the HTD in this study.

References

1.
IAEA
,
2020
, “
Understanding and Prediction of Thermohydraulic Phenomena Relevant to Supercritical Water Cooled Reactors (SCWRs)
,”
Final Report of Coordinated Research Project
IAEA TECDOC Series, Vienna, Austria, Report No. IAEA-TECDOC-1900, p.
544
.
2.
Locatelli
,
G.
,
Mancini
,
M.
, and
Todeschini
,
N.
,
2013
, “
Generation IV Nuclear Reactors: Current Status and Future Prospects
,”
Energy Policy
,
61
, pp.
1503
1520
.10.1016/j.enpol.2013.06.101
3.
Zada
,
K. R.
,
Hyder
,
M. B.
,
Drost
,
M. K.
, and
Fronk
,
B. M.
,
2016
, “
Numbering-Up of Microscale Devices for Megawatt-Scale Supercritical Carbon-Dioxide Concentrating Solar Power Receivers
,”
ASME J. Sol. Energy Eng.
,
138
(
6
), p.
061007
.10.1115/1.4034516
4.
Luu
,
M. T.
,
Milani
,
D.
,
McNaughton
,
R.
, and
Abbas
,
A.
,
2017
, “
Analysis for Flexible Operation of Supercritical CO2 Brayton Cycle Integrated With Solar Thermal Systems
,”
Energy
,
124
, pp.
752
771
.10.1016/j.energy.2017.02.040
5.
Chen
,
L.
, and
Zhang
,
X. R.
,
2014
, “
Experimental Analysis on a Novel Solar Collector System Achieved by Supercritical CO2 Natural Convection
,”
Energy Convers. Manage.
,
77
, pp.
173
182
.10.1016/j.enconman.2013.08.059
6.
Huang
,
G. D.
,
Shu
,
G. Q.
,
Tian
,
H.
,
Shi
,
L. F.
,
Zhuge
,
W. L.
,
Zhang
,
J.
, and
Atik
,
M. A. R.
,
2020
, “
Development and Experimental Study of a Supercritical CO2 Axial Turbine Applied for Engine Waste Heat Recovery
,”
Appl. Energy
,
257
, p.
113997
.10.1016/j.apenergy.2019.113997
7.
Kim
,
S. C.
,
Won
,
J. P.
, and
Kim
,
M. S.
,
2009
, “
Effects of Operating Parameters on the Performance of a CO2 Air Conditioning System for Vehicles
,”
Appl. Therm. Eng.
,
29
(
11–12
), pp.
2408
2416
.10.1016/j.applthermaleng.2008.12.017
8.
Ma
,
Y. T.
,
Liu
,
Z. Y.
, and
Tian
,
H.
,
2013
, “
A Review of Transcritical Carbon-Dioxide Heat Pump and Refrigeration Cycles
,”
Energy
,
55
, pp.
156
172
.10.1016/j.energy.2013.03.030
9.
Blackburn
,
J. M.
,
Long
,
D. P.
,
Cabanñas
,
A.
, and
Watkins
,
J. J.
,
2001
, “
Deposition of Conformal Copper and Nickel Films From Supercritical Carbon Dioxide
,”
Science
,
294
(
5540
), pp.
141
145
.10.1126/science.1064148
10.
Vikhrev
,
Y.
,
Barulin
,
Y.
, and
Konkov
,
A.
,
1967
, “
A Study of Heat Transfer in Vertical Tubes at Supercritical Pressure
,”
Therm. Eng.
,
14
(
9
), pp.
116
119
.
11.
Kim
,
J. K.
,
Jeon
,
H. K.
, and
Lee
,
J. S.
,
2007
, “
Wall Temperature Measurements With Turbulent Flow in Heated Vertical Circular/Non-Circular Channels of Supercritical Pressure Carbon-Dioxide
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4908
4911
.10.1016/j.ijheatmasstransfer.2007.06.026
12.
Liu
,
S. H.
,
Huang
,
Y. P.
,
Liu
,
G. X.
,
Wang
,
J. F.
, and
Leung
,
L. K. H.
,
2017
, “
Improvement of Buoyancy and Acceleration Parameters for Forced and Mixed Convective Heat Transfer to Supercritical Fluids Flowing in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
106
, pp.
1144
1156
.10.1016/j.ijheatmasstransfer.2016.10.093
13.
Zhang
,
S. J.
,
Xu
,
X. X.
,
Liu
,
C.
,
Liu
,
X. X.
, and
Dang
,
C. B.
,
2019
, “
Experimental Investigation on the Heat Transfer Characteristics of Supercritical CO2 at Various Mass Flow Rates in Heated Vertical-Flow Tube
,”
Appl. Therm. Eng.
,
157
, p.
113687
.10.1016/j.applthermaleng.2019.04.097
14.
Zhao
,
C. R.
,
Liu
,
Q. F.
,
Zhang
,
Z.
,
Jiang
,
P. X.
, and
Bo
,
H. L.
,
2018
, “
Investigation of Buoyancy-Enhanced Heat Transfer of Supercritical CO2 in Upward and Downward Tube Flows
,”
J. Suprcrit Fluid
,
138
, pp.
154
166
.10.1016/j.supflu.2018.03.014
15.
Bae
,
Y. Y.
,
Kim
,
H. Y.
, and
Kang
,
D. J.
,
2010
, “
Forced and Mixed Convection Heat Transfer to Supercritical CO2 Vertically Flowing in a Uniformly Heated Circular Tube
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1295
1308
.10.1016/j.expthermflusci.2010.06.001
16.
Zahlan
,
H.
,
Groeneveld
,
D.
, and
Tavoularis
,
S.
,
2015
, “
Measurements of Convective Heat Transfer to Vertical Upward Flows of CO2 in Circular Tubes at Near-Critical and Supercritical Pressures
,”
Nuc. Eng. Des.
,
289
, pp.
92
107
.10.1016/j.nucengdes.2015.04.013
17.
Yang
,
Z.
,
Bi
,
Q.
,
Wang
,
H.
,
Wu
,
G.
, and
Hu
,
R.
,
2013
, “
Experiment of Heat Transfer to Supercritical Water Flowing in Vertical Annular Channels
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
4
), p.
042504
.10.1115/1.4023224
18.
Jackson
,
J. D.
, and
Hall
,
W. B.
,
1979
, “
Influences of Buoyancy on Heat Transfer to Fluids Flowing in Vertical Tubes Under Turbulent Conditions
,”
Turbulent Forced Convection in Channels and Bundles
,
S.
Kakac
and
D.B.
Spalding
, eds.,
Hemisphere
, New York, pp.
613
640
.
19.
Shiralkar
,
B. S.
, and
Griffith
,
P.
,
1968
, “
The Deterioration in Heat Transfer to Fluids at Super- Critical Pressure and High Heat Fluxes
,”
MIT Engineering Project Laboratory
, Massachusetts Institute of Technology, Cambridge, MA, Report No. 70332-55.
20.
Kim
,
J. K.
,
Jeon
,
H. K.
, and
Lee
,
J. S.
,
2007
, “
Wall Temperature Measurement and Heat Transfer Correlation of Turbulent Supercritical Carbon Dioxide Flow in Vertical Circular/Non-Circular Tubes
,”
Nucl. Eng. Des.
,
237
(
15–17
), pp.
1795
1802
.10.1016/j.nucengdes.2007.02.017
21.
Grabezhnaya
,
V. A.
, and
Kirillov
,
P. L.
,
2006
, “
Heat Transfer Under Supercritical Pressures and Heat Transfer Deterioration Boundaries
,”
Therm. Eng.
,
53
(
4
), pp.
296
301
.10.1134/S0040601506040069
22.
Kline
,
N.
,
Feuerstein
,
F.
, and
Tavoularis
,
S.
,
2018
, “
Onset of Heat Transfer Deterioration in Vertical Pipe Flows of CO2 at Supercritical Pressures
,”
Int. J. Heat Mass Transfer
,
118
, pp.
1056
1068
.10.1016/j.ijheatmasstransfer.2017.11.039
23.
Kiss
,
A.
,
Balaskó
,
M.
,
Horváth
,
L.
,
Kis
,
Z.
, and
Aszódi
,
A.
,
2017
, “
Experimental Investigation of the Thermal Hydraulics of Supercritical Water Under Natural Circulation in a Closed Loop
,”
Ann. Nucl. Energy
,
100
(
2
), pp.
178
203
.10.1016/j.anucene.2016.09.020
24.
Yamagata
,
K.
,
Nishikawa
,
K.
,
Hasegawa
,
S.
,
Fujii
,
T.
, and
Yoshida
,
S.
,
1972
, “
Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes
,”
Int. J. Heat Mass Transfer
,
15
(
12
), pp.
2575
2593
.10.1016/0017-9310(72)90148-2
25.
Liu
,
G.
,
Huang
,
Y.
,
Wang
,
J.
, and
Leung
,
L. H.
,
2016
, “
Heat Transfer of Supercritical Carbon Dioxide Flowing in a Rectangular Circulation Loop
,”
Appl. Therm. Eng.
,
98
, pp.
39
48
.10.1016/j.applthermaleng.2015.11.110
26.
Bodkha
,
K.
,
Pilkhwal
,
D. S.
, and
Maheshwari
,
N. K.
,
2022
, “
Experimental Investigations on Thermal-Hydraulics of Supercritical Carbon Dioxide Under Natural Circulation Vertical Flows
,”
ASME J. Heat Transfer-Trans. ASME
,
144
(
8
), p.
082601
.10.1115/1.4054553
27.
United Performance Metals
,
2021
, “Nickel Alloy 625,”
United Performance Metals
,
Cincinnati, OH
, accessed Feb. 18, 2021, https://www.upmet.com/sites/default/files/datasheets/625.pdf
28.
Kurganov
,
V. A.
, and
Kaptil'ny
,
A. G.
,
1992
, “
Velocity and Enthalpy Fields and Eddy Diffusivities in a Heated Supercritical Fluid Flow
,”
Exp. Therm. Fluid Sci.
,
5
(
4
), pp.
465
478
.10.1016/0894-1777(92)90033-2
29.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1930
,
Publications in Engineering
, Vol.
2
,
University of California
,
Berkeley, CA
, pp.
443
461
.
30.
Zhang
,
Q.
,
Li
,
H.
,
Kong
,
X.
,
Liu
,
J.
, and
Lei
,
X.
,
2018
, “
Special Heat Transfer Characteristics of Supercritical CO2 Flowing in a Vertically-Upward Tube With Low Mass Flux
,”
Int. J. Heat Mass Transfer
,
122
, pp.
469
482
.10.1016/j.ijheatmasstransfer.2018.01.112
31.
Gupta
,
S.
,
Saltanov
,
E.
,
Mokry
,
S.
,
Pioro
,
I.
,
Trevani
,
L.
, and
McGillivray
,
D.
,
2013
, “
Developing Empirical Heat-Transfer Correlations for Supercritical CO2 Flowing in Vertical Bare Tubes
,”
Nucl. Eng. Des.
,
261
, pp.
116
131
.10.1016/j.nucengdes.2013.02.048
32.
Xie
,
J.
,
Liu
,
D.
,
Yan
,
H.
,
Xie
,
G.
, and
Boetcher
,
S. K. S.
,
2020
, “
A Review of Heat Transfer Deterioration of Supercritical Carbon Dioxide Flowing in Vertical Tubes: Heat Transfer Behaviors, Identification Methods, Critical Heat Fluxes, and Heat Transfer Correlations
,”
Int. J. Heat Mass Transfer
,
149
, p.
119233
.10.1016/j.ijheatmasstransfer.2019.119233
33.
Kim
,
D. E.
, and
Kim
,
M. H.
,
2010
, “
Experimental Study of the Effects of Flow Acceleration and Buoyancy on Heat Transfer in a Supercritical Fluid Flow in a Circular Tube
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3336
3349
.10.1016/j.nucengdes.2010.07.002
34.
Jackson
,
J. D.
,
2013
, “
Fluid Flow and Convective Heat Transfer to Fluids at Supercritical Pressure
,”
Nucl. Eng. Des.
,
264
, pp.
24
40
.10.1016/j.nucengdes.2012.09.040
You do not currently have access to this content.