Abstract

Coating the hollow ligaments of open-cell (fluid-through) metallic foams (MFs) fabricated via the sintering route with a thin layer of graphene can improve the effective thermal conductivity (ETC) of the foam without significantly increasing its flow resistance, potentially important for thermal storage applications. However, the Euclidean geometry cannot accurately depict the random distribution of pores within MFs. To this end, the present study aims to analyze how such thin coatings affect the ETC of MF by employing the fractal theory to depict the random distribution of its open pores. Subsequently, a cubic representative structure is chosen for self-similar pores in the fractal to establish a correlation between the geometric parameters of MF and its fractal dimension. Upon determining the thermal resistance provided a representative structure of the foam having coated hollow ligaments, its ETC is derived as a function of fractal dimension, dimensionless parameters of pore size, porosity, and thermal conductivity of relevant materials (e.g., ligaments, coatings, and filling medium). For validation, existing experimental data are used to compare with analytical predictions, with good agreement achieved. It is demonstrated that the ligament hollowness weakens the thermal conduction of MFs. In addition, when the coating has a thermal conductivity greater than that of ligament, the coating enhances the ability of the foam to conduct heat. Although the ligament hollowness and coating thickness are imperative factors affecting the ETC, the material makes of ligament and coating plays a decisive role in the ETC.

References

1.
Soares
,
N.
,
Costa
,
J. J.
,
Gaspar
,
A. R.
, and
Santos
,
P.
,
2013
, “
Review of Passive PCM Latent Heat Thermal Energy Storage Systems Towards Buildings' Energy Efficiency
,”
Energy Buildings
,
59
, pp.
82
103
.10.1016/j.enbuild.2012.12.042
2.
Li
,
F.
,
Huang
,
X.
,
Li
,
Y.
,
Lu
,
L.
,
Meng
,
X.
,
Yang
,
X.
, and
Sundén
,
B.
,
2023
, “
Application and Analysis of Flip Mechanism in the Melting Process of a Triplex-Tube Latent Heat Energy Storage Unit
,”
Energy Rep.
,
9
, pp.
3989
4004
.10.1016/j.egyr.2023.03.037
3.
Miers
,
C. S.
, and
Marconnet
,
A.
,
2021
, “
Experimental Investigation of Composite Phase Change Material Heat Sinks for Enhanced Passive Thermal Management
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
1
), p.
013001
.10.1115/1.4048620
4.
Orozco
,
D.
,
Hinojosa
,
J.
, and
Amaya
,
K.
,
2021
, “
The Effect of a Segmented Wall Filled With Phase Change Material on Heat Transfer and Airflow in a Closed Cavity
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
9
), p.
093001
.10.1115/1.4051600
5.
Xiao
,
T.
,
Liu
,
G.
,
Guo
,
J.
,
Shu
,
G.
,
Lu
,
L.
, and
Yang
,
X.
,
2022
, “
Effect of Metal Foam on Improving Solid–Liquid Phase Change in a Multi-Channel Thermal Storage Tank
,”
Sustain. Energy Technol. Assess.
,
53
, p.
102533
.10.1016/j.seta.2022.102533
6.
Zhang
,
K.
,
Prakash
,
A.
,
Paul
,
L.
,
Blum
,
D.
,
Alstone
,
P.
,
Zoellick
,
J.
,
Brown
,
R.
, and
Pritoni
,
M.
,
2022
, “
Model Predictive Control for Demand Flexibility: Real-World Operation of a Commercial Building With Photovoltaic and Battery Systems
,”
Adv. Appl. Energy
,
7
, p.
100099
.10.1016/j.adapen.2022.100099
7.
Xiao
,
T.
,
Yang
,
X.
,
Hooman
,
K.
, and
Lu
,
T. J.
,
2021
, “
Analytical Fractal Models for Permeability and Conductivity of Open-Cell Metallic Foams
,”
Int. J. Heat Mass Transfer
,
177
, p.
121509
.10.1016/j.ijheatmasstransfer.2021.121509
8.
Xiao
,
T.
,
Liu
,
Z.
,
Lu
,
L.
,
Han
,
H.
,
Huang
,
X.
,
Song
,
X.
,
Yang
,
X.
, and
Meng
,
X.
,
2023
, “
LSTM-BP Neural Network Analysis on Solid-Liquid Phase Change in a Multi-Channel Thermal Storage Tank
,”
Eng. Anal. Bound. Elem.
,
146
, pp.
226
240
.10.1016/j.enganabound.2022.10.014
9.
Yao
,
Y.
,
Wu
,
H.
, and
Liu
,
Z.
,
2018
, “
Direct Simulation of Interstitial Heat Transfer Coefficient Between Paraffin and High Porosity Open-Cell Metal Foam
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
3
), p.
032601
.10.1115/1.4038006
10.
Du
,
Z.
,
Liu
,
G.
,
Huang
,
X.
,
Xiao
,
T.
,
Yang
,
X.
, and
He
,
Y.-L.
,
2023
, “
Numerical Studies on a Fin-Foam Composite Structure Towards Improving Melting Phase Change
,”
Int. J. Heat Mass Transfer
,
208
, p.
124076
.10.1016/j.ijheatmasstransfer.2023.124076
11.
Kennedy
,
K. M.
,
Ruggles
,
T. H.
,
Rinaldi
,
K.
,
Dowling
,
J. A.
,
Duan
,
L.
,
Caldeira
,
K.
, and
Lewis
,
N. S.
,
2022
, “
The Role of Concentrated Solar Power With Thermal Energy Storage in Least-Cost Highly Reliable Electricity Systems Fully Powered by Variable Renewable Energy
,”
Adv. Appl. Energy
,
6
, p.
100091
.10.1016/j.adapen.2022.100091
12.
Xiao
,
T.
,
Du
,
Z.
,
Lu
,
L.
,
Li
,
Y.
,
Huang
,
X.
,
Yang
,
X.
, and
He
,
Y.-L.
,
2023
, “
Melting of Phase Change Materials Inside Metal Foams With Uniform/Graded Porosity: Pore-Scale Simulation
,”
Appl. Therm. Eng.
,
232
, p.
121082
.10.1016/j.applthermaleng.2023.121082
13.
Jadhav
,
P. H.
,
Gnanasekaran
,
N.
, and
Arumuga Perumal
,
D.
,
2021
, “
Numerical Consideration of LTNE and Darcy Extended Forchheimer Models for the Analysis of Forced Convection in a Horizontal Pipe in the Presence of Metal Foam
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
1
), p.
012702
.10.1115/1.4048622
14.
Al-Damook
,
A.
, and
Azzawi
,
I. D.
,
2022
, “
MHD Natural Convection of Water in an L-Shaped Container Filled With an Aluminium Metal Foam
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
2
), p.
022601
.
15.
Singh
,
P.
,
Nithyanandam
,
K.
,
Zhang
,
M.
, and
Mahajan
,
R. L.
,
2020
, “
The Effect of Metal Foam Thickness on Jet Array Impingement Heat Transfer in High-Porosity Aluminum Foams
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
5
), p.
052301
.10.1115/1.4045640
16.
Jayakumar
,
A.
, and
Mani
,
A.
,
2022
, “
Experimental and Numerical Study of Hydrodynamic and Heat Transfer Characteristics of Falling Film Over Metal Foam Layered Horizontal Tube
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
4
), p.
041601
.10.1115/1.4053203
17.
Li
,
Y.
,
Gong
,
L.
,
Xu
,
M.
, and
Joshi
,
Y.
,
2021
, “
A Review of Thermo-Hydraulic Performance of Metal Foam and Its Application as Heat Sinks for Electronics Cooling
,”
ASME J. Electron. Packag.
,
143
(
3
), p.
030801
.10.1115/1.4048861
18.
Hossain
,
M. S.
, and
Shabani
,
B.
,
2015
, “
Metal Foams Application to Enhance Cooling of Open Cathode Polymer Electrolyte Membrane Fuel Cells
,”
J. Power Sources
,
295
, pp.
275
291
.10.1016/j.jpowsour.2015.07.022
19.
Wang
,
Y.
,
Yuan
,
H.
,
Martinez
,
A.
,
Hong
,
P.
,
Xu
,
H.
, and
Bockmiller
,
F. R.
,
2021
, “
Polymer Electrolyte Membrane Fuel Cell and Hydrogen Station Networks for Automobiles: Status, Technology, and Perspectives
,”
Adv. Appl. Energy
,
2
, p.
100011
.10.1016/j.adapen.2021.100011
20.
Zhang
,
G.
,
Wu
,
L.
,
Qin
,
Z.
,
Wu
,
J.
,
Xi
,
F.
,
Mou
,
G.
,
Wang
,
Y.
, and
Jiao
,
K.
,
2021
, “
A Comprehensive Three-Dimensional Model Coupling Channel Multi-Phase Flow and Electrochemical Reactions in Proton Exchange Membrane Fuel Cell
,”
Adv. Appl. Energy
,
2
, p.
100033
.10.1016/j.adapen.2021.100033
21.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1962
, “
A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials
,”
J. Appl. Phys.
,
33
(
10
), pp.
3125
3131
.10.1063/1.1728579
22.
Maxwell
,
J. C.
,
1873
,
A Treatise on Electricity and Magnetism
,
Clarendon Press
, UK.
23.
Carson
,
J. K.
,
Lovatt
,
S. J.
,
Tanner
,
D. J.
, and
Cleland
,
A. C.
,
2005
, “
Thermal Conductivity Bounds for Isotropic, Porous Materials
,”
Int. J. Heat Mass Transfer
,
48
(
11
), pp.
2150
2158
.10.1016/j.ijheatmasstransfer.2004.12.032
24.
Calmidi
,
V.
, and
Mahajan
,
R.
,
1999
, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
121
(
2
), pp.
466
471
.10.1115/1.2826001
25.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.10.1016/S0017-9310(01)00220-4
26.
Lafdi
,
K.
,
Almajali
,
M.
, and
Huzayyin
,
O.
,
2009
, “
Thermal Properties of Copper-Coated Carbon Foams
,”
Carbon
,
47
(
11
), pp.
2620
2626
.10.1016/j.carbon.2009.05.014
27.
Chan
,
K. C.
,
Tso
,
C. Y.
,
Hussain
,
A.
, and
Chao
,
C. Y. H.
,
2019
, “
A Theoretical Model for the Effective Thermal Conductivity of Graphene Coated Metal Foams
,”
Appl. Therm. Eng.
,
161
, p.
114112
.10.1016/j.applthermaleng.2019.114112
28.
Lu
,
T.
,
Stone
,
H. A.
, and
Ashby
,
M.
,
1998
, “
Heat Transfer in Open-Cell Metal Foams
,”
Acta Mater.
,
46
(
10
), pp.
3619
3635
.10.1016/S1359-6454(98)00031-7
29.
Paek
,
J.
,
Kang
,
B.
,
Kim
,
S.
, and
Hyun
,
J. M.
,
2000
, “
Effective Thermal Conductivity and Permeability of Aluminum Foam Materials1
,”
Int. J. Thermophys.
,
21
(
2
), pp.
453
464
.10.1023/A:1006643815323
30.
Edouard
,
D.
,
2011
, “
The Effective Thermal Conductivity for “Slim” and “Fat” Foams
,”
AIChE J.
,
57
(
6
), pp.
1646
1651
.10.1002/aic.12372
31.
Zenner
,
A.
, and
Edouard
,
D.
,
2017
, “
Revised Cubic Model for Theoretical Estimation of Effective Thermal Conductivity of Metal Foams
,”
Appl. Therm. Eng.
,
113
, pp.
1313
1318
.10.1016/j.applthermaleng.2016.11.129
32.
Dai
,
Z.
,
Nawaz
,
K.
,
Park
,
Y.
,
Bock
,
J.
, and
Jacobi
,
A. M.
,
2010
, “
Correcting and Extending the Boomsma–Poulikakos Effective Thermal Conductivity Model for Three-Dimensional, Fluid-Saturated Metal Foams
,”
Int. Commun. Heat Mass Transfer
,
37
(
6
), pp.
575
580
.10.1016/j.icheatmasstransfer.2010.01.015
33.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2011
, “
On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam (Vol 44, pg 827, 2001)
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
746
748
.10.1016/j.ijheatmasstransfer.2010.08.023
34.
Yang
,
X. H.
,
Bai
,
J. X.
,
Yan
,
H. B.
,
Kuang
,
J. J.
,
Lu
,
T. J.
, and
Kim
,
T.
,
2014
, “
An Analytical Unit Cell Model for the Effective Thermal Conductivity of High Porosity Open-Cell Metal Foams
,”
Transp. Porous Media
,
102
(
3
), pp.
403
426
.10.1007/s11242-014-0281-z
35.
Yang
,
H.
,
Zhao
,
M.
,
Gu
,
Z.
,
Jin
,
L.
, and
Chai
,
J.
,
2015
, “
A Further Discussion on the Effective Thermal Conductivity of Metal Foam: An Improved Model
,”
Int. J. Heat Mass Transfer
,
86
, pp.
207
211
.10.1016/j.ijheatmasstransfer.2015.03.001
36.
Saxena
,
V.
,
Kothari
,
R.
,
Kumar
,
A.
,
Sahu
,
S. K.
, and
Kundalwal
,
S. I.
,
2022
, “
A Theoretical Model for Effective Thermal Conductivity of Open‐Cell‐Coated Metal Foams Saturated With Fluid/Phase Change Material
,”
Int. J. Energy Res.
,
46
(
11
), pp.
14877
14900
.10.1002/er.8190
37.
Mandelbrot
,
B. B.
, and
Wheeler
,
J. A.
,
1983
, “
The Fractal Geometry of Nature
,”
Am. J. Phys.
,
51
(
3
), pp.
286
287
.10.1119/1.13295
38.
Yu
,
B.
, and
Cheng
,
P.
,
2002
, “
A Fractal Permeability Model for bi-Dispersed Porous Media
,”
Int. J. Heat Mass Transfer
,
45
(
14
), pp.
2983
2993
.10.1016/S0017-9310(02)00014-5
39.
Xiao
,
T.
,
Guo
,
J.
,
Yang
,
X.
,
Hooman
,
K.
, and
Lu
,
T. J.
,
2022
, “
On the Modelling of Heat and Fluid Transport in Fibrous Porous Media: Analytical Fractal Models for Permeability and Thermal Conductivity
,”
Int. J. Therm. Sci.
,
172
, p.
107270
.10.1016/j.ijthermalsci.2021.107270
40.
Thompson
,
A.
,
Katz
,
A.
, and
Krohn
,
C.
,
1987
, “
The Microgeometry and Transport Properties of Sedimentary Rock
,”
Adv. Phys.
,
36
(
5
), pp.
625
694
.10.1080/00018738700101062
41.
Zhang
,
C.
,
Wu
,
L.
, and
Chen
,
Y.
,
2015
, “
Study on Solidification of Phase Change Material in Fractal Porous Metal Foam
,”
Fractals
,
23
(
01
), p.
1540003
.10.1142/S0218348X15400034
42.
Yu
,
B.
, and
Cheng
,
P.
,
2002
, “
Fractal Models for the Effective Thermal Conductivity of Bidispersed Porous Media
,”
J. Thermophys. Heat Transfer
,
16
(
1
), pp.
22
29
.10.2514/2.6669
43.
Zhao
,
C. Y.
,
Lu
,
T. J.
,
Hodson
,
H. P.
, and
Jackson
,
J. D.
,
2004
, “
The Temperature Dependence of Effective Thermal Conductivity of Open-Celled Steel Alloy Foams
,”
Mat. Sci. Eng.
,
367
(
1–2
), pp.
123
131
.10.1016/j.msea.2003.10.241
44.
Fourie
,
J. G.
, and
Du Plessis
,
J. P.
,
2002
, “
Pressure Drop Modelling in Cellular Metallic Foams
,”
Chem. Eng. Sci.
,
57
(
14
), pp.
2781
2789
.10.1016/S0009-2509(02)00166-5
45.
Jayakumar
,
A.
, and
Mani
,
A.
,
2021
, “
Image-Based Method for Evaluation of Effective Thermal Conductivity of Metal Foam With Hollow Ligaments
,”
Int. J. Heat Mass Transfer
,
164
, p.
120490
.10.1016/j.ijheatmasstransfer.2020.120490
46.
Yu
,
B.
,
Lee
,
L. J.
, and
Cao
,
H.
,
2002
, “
A Fractal in‐Plane Permeability Model for Fabrics
,”
Polym. Compos.
,
23
(
2
), pp.
201
221
.10.1002/pc.10426
47.
Yu
,
B.
, and
Li
,
J.
,
2001
, “
Some Fractal Characters of Porous Media
,”
Fractals
,
9
(
3
), pp.
365
372
.10.1142/S0218348X01000804
48.
Reyes
,
C.
,
Béjar
,
L.
,
Carranza
,
J. C.
,
Pérez
,
P.
,
Pérez
,
L.
, and
Alfonso
,
I.
,
2023
, “
DEM-FEM Combination for Modeling and Simulation of Fractal Metallic Foams
,”
Mater. Today Commun.
,
34
, p.
105054
.10.1016/j.mtcomm.2022.105054
49.
Yu
,
B.
,
2005
, “
Fractal Character for Tortuous Streamtubes in Porous Media
,”
Chin. Phys. Lett.
,
22
(
1
), p.
158
.
50.
Dietrich
,
B.
,
Schell
,
G.
,
Bucharsky
,
E. C.
,
Oberacker
,
R.
,
Hoffmann
,
M. J.
,
Schabel
,
W.
,
Kind
,
M.
, and
Martin
,
H.
,
2010
, “
Determination of the Thermal Properties of Ceramic Sponges
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
198
205
.10.1016/j.ijheatmasstransfer.2009.09.041
51.
Jana
,
D. C.
,
Sundararajan
,
G.
, and
Chattopadhyay
,
K.
,
2017
, “
Effect of Porosity on Structure, Young's Modulus, and Thermal Conductivity of SiC Foams by Direct Foaming and Gelcasting
,”
J. Am. Ceram. Soc.
,
100
(
1
), pp.
312
322
.10.1111/jace.14544
52.
Yao
,
Y.
,
Wu
,
H.
, and
Liu
,
Z.
,
2015
, “
A New Prediction Model for the Effective Thermal Conductivity of High Porosity Open-Cell Metal Foams
,”
Int. J. Therm. Sci.
,
97
, pp.
56
67
.10.1016/j.ijthermalsci.2015.06.008
You do not currently have access to this content.