Abstract

Two-phase flow boiling is the preferred method for efficient heat dissipation in electronic equipment, so the bubble dynamics and heat transfer characteristics of flow boiling in a single pentagonal rib channel are numerically analyzed by the volume of fluid (VOF) model. Three typical rib structures are obtained, whose block ratios are 0.4, 0.75, and 0.25, and the corresponding length-diameter ratios are 1.72, 0.59, and 12.70, respectively. The Reynolds number is 14,000 and 28,000. The heat flux is set from 50 to 150 kW/m2. The results show that the starting position of the bubble is at the cone and sides of the rib, and its moving direction is related to the configuration of the rib, the heat flux, and fluid velocity. Additionally, the bubbles are shedding at the corner of the rib, and the short rib does not appear to be the vortex shedding phenomenon. The wall temperature and temperature fluctuation increase with the increase of heat flux and with the decrease of fluid velocity. The heat transfer coefficient decreases with the increase of heat flux and with the decrease of fluid velocity. The short rib channel has a higher heat transfer coefficient, approximately 14% and 50% higher than that of the median and long rib channels, respectively. Compared with the single-phase flow, the main frequency of the lift coefficient increases with the increase of the fluid velocity while decreasing with the increase of heat flux. The main frequency of the median rib without harmonic signal keeps constant, and that for long rib decreases by 38%. The study of the instantaneous characteristics of bubble growth in pentagonal rib channels is instructive to the efficient heat dissipation in electronic equipment.

References

1.
McNeil
,
D. A.
,
Raeisi
,
A. H.
,
Kew
,
P. A.
, and
Bobbili
,
P. R.
,
2010
, “
A Comparison of Flow Boiling Heat-Transfer in in-Line Mini Pin Fin and Plane Channel Flows
,”
Appl. Therm. Eng.
,
30
(
16
), pp.
2412
2425
.10.1016/j.applthermaleng.2010.06.011
2.
Sommers
,
A. D.
, and
Yerkes
,
K. L.
,
2013
, “
Using Micro-Structural Surface Features to Enhance the Convective Flow Boiling Heat Transfer of R-134a on Aluminum
,”
Int. J. Heat Mass Transfer
,
64
, pp.
1053
1063
.10.1016/j.ijheatmasstransfer.2013.05.053
3.
Kim
,
C. H.
,
Lee
,
M. J.
, and
Park
,
C. Y.
,
2018
, “
An Experimental Study on the Heat Transfer and Pressure Drop Characteristics of Electronics Cooling Heat Sinks With FC-72 Flow Boiling
,”
J. Mech. Sci. Technol
,.,
32
(
3
), pp.
1449
1462
.10.1007/s12206-018-0249-y
4.
Koşar
,
A.
, and
Peles
,
Y.
,
2007
, “
Boiling Heat Transfer in a Hydrofoil-Based Micro Pin Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
1018
1034
.10.1016/j.ijheatmasstransfer.2006.07.032
5.
Xue
,
Y.
,
Yuan
,
M.
,
Ma
,
A. X.
, and
Wei
,
J. J.
,
2011
, “
Enhanced Boiling Heat Transfer by Using Micro-Pin-Finned Surface in Three Different Test Systems
,”
Heat Transfer Eng.
,
32
(
11–12
), pp.
1062
1068
.10.1080/01457632.2011.556501
6.
Law
,
M.
,
Lee
,
P. S.
, and
Balasubramanian
,
K.
,
2014
, “
Experimental Investigation of Flow Boiling Heat Transfer in Novel Oblique-Finned Microchannels
,”
Int. J. Heat Mass Transfer
,
76
, pp.
419
431
.10.1016/j.ijheatmasstransfer.2014.04.045
7.
Wan
,
W.
,
Deng
,
D.
,
Huang
,
Q.
,
Zeng
,
T.
, and
Huang
,
Y.
,
2017
, “
Experimental Study and Optimization of Pin Fin Shapes in Fow Boiling of Micro Pin Fin Heat Sinks
,”
Appl. Therm. Eng.
,
114
, pp.
436
449
.10.1016/j.applthermaleng.2016.11.182
8.
Li
,
J.
,
Ling
,
X.
, and
Peng
,
H.
,
2017
, “
Experimental Study of Boiling Heat Transfer and Flow Characteristics in Fin Channels With Variable Cross Section
,”
Exp. Therm. Fluid Sci.
,
84
, pp.
279
285
.10.1016/j.expthermflusci.2017.02.013
9.
Qu
,
W. L.
, and
Abel
,
S. H.
,
2009
, “
Experimental Study of Saturated flow Boiling Heat Transfer in an Array of Staggered Micro-Pin-fins
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
1853
1863
.10.1016/j.ijheatmasstransfer.2008.10.008
10.
Chien
,
L. H.
,
Liao
,
W. R.
,
Ghalambaz
,
M.
, and
Yan
,
W. M.
,
2019
, “
Experimental Study on Convective Boiling of Micro-Pin-finned Channels With Parallel Arrangement fins for FC-72 Dielectric fluid
,”
Int. J. Heat Mass Transf
er,
138
, pp.
390
400
.10.1016/j.ijheatmasstransfer.2019.04.072
11.
Balasubramanian
,
K.
,
Lee
,
P. S.
,
Teo
,
C. J.
, and
Chou
,
S. K.
,
2013
, “
Flow Boiling Heat Transfer and Pressure Drop in Stepped Fin Microchannels
,”
Int. J. Heat Mass Transf
er,
67
, pp.
234
252
.10.1016/j.ijheatmasstransfer.2013.08.023
12.
Krishnamurthy
,
S.
, and
Peles
,
Y.
,
2008
, “
Flow Boiling of Water in a Circular Staggered Micro-Pin Fin Heat Sink
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1349
1364
.10.1016/j.ijheatmasstransfer.2007.11.026
13.
Krishnamurthy
,
S.
, and
Peles
,
Y.
,
2010
, “
Flow Boiling on Micropin Fins Entrenched Inside a Microchannel—Flow Patterns and Bubble Departure Diameter and Bubble Frequency
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
4
), p.
041002
.10.1115/1.2994718
14.
Deng
,
D.
,
Chen
,
L.
,
Wan
,
W.
,
Fu
,
T.
, and
Huang
,
X.
,
2019
, “
Flow Boiling Performance in Pin fin-Interconnected Reentrant Microchannels Heat Sink in Different Operational Conditions
,”
Appl. Therm. Eng.
,
150
, pp.
1260
1272
.10.1016/j.applthermaleng.2019.01.092
15.
Wang
,
Y.
,
Shin
,
J.-H.
,
Woodcock
,
C.
,
Yu
,
X.
, and
Peles
,
Y.
,
2019
, “
Local, Transient Heat Transfer Measurements for flow Boiling in a Microchannel With a Pin fin
,”
Int. J. Heat Mass Transfer
,
134
, pp.
377
387
.10.1016/j.ijheatmasstransfer.2019.01.048
16.
Lie
,
Y. M.
,
Ke
,
J. H.
,
Chang
,
W. R.
,
Cheng
,
T. C.
, and
Lin
,
T. F.
,
2007
, “
Saturated flow Boiling Heat Transfer and Associated Bubble Characteristics of FC-72 on a Heated Micro-Pin-finned Silicon Chip
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3862
3876
.10.1016/j.ijheatmasstransfer.2007.02.010
17.
Kong
,
L. J.
,
Liu
,
Z. G.
,
Jia
,
L.
,
Lv
,
M. M.
, and
Liu
,
Y.
,
2020
, “
Experimental Study on Flow and Heat Transfer Characteristics at Onset of Nucleate Boiling in Micro Pin Fin Heat Sinks
,”
Exp. Therm. Fluid Sci.
,
115
, p.
109946
.10.1016/j.expthermflusci.2019.109946
18.
Lee
,
W.
,
Son
,
G.
, and
Yoon
,
H. Y.
,
2012
, “
Direct Numerical Simulation of Flow Boiling in a Finned Microchannel
,”
Int. Commun. Heat Mass Transfer
,
39
(
9
), pp.
1460
1466
.10.1016/j.icheatmasstransfer.2012.08.005
19.
Prajapati
,
Y. K.
,
Pathak
,
M.
, and
Khan
,
M. K.
,
2017
, “
Numerical Investigation of Subcooled Flow Boiling in Segmented Finned Microchannels
,”
Int. Commun. Heat Mass Transfer
,
86
, pp.
215
221
.10.1016/j.icheatmasstransfer.2017.06.009
20.
Jeyaraj
,
T.
, and
Pankaj
,
K.
,
2022
, “
Numerical Investigation of Flow Boiling Characteristics of Water in a Rectangular Microchannel
,”
J. Therm. Anal. Calorim.
,
147
(
1
), pp.
579
598
.10.1007/s10973-020-10231-x
21.
Qi
,
D.
,
He
,
J.
,
Xu
,
Y. S.
,
Lin
,
M.
, and
Wang
,
Q. W.
,
2022
, “
Effect of Rib Diameter on Flow Boiling Heat Transfer With Staggered Rib Arrays in a Heat Sink
,”
Energy
,
239
, p.
122323
.10.1016/j.energy.2021.122323
22.
Lee
,
W. H.
,
1980
, “
A Pressure Iteration Scheme for Two-Phase Flow Modeling
,”
Multiphase Transport Fundamentals, Reactor Safety, Applications
,
Washington, DC
.
23.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
24.
Dinsenmeyer
,
R.
,
Fourmigué
,
J. F.
,
Caney
,
N.
, and
Marty
,
P.
,
2017
, “
Volume of Fluid Approach of Boiling Flows in Concentrated Solar Plants
,”
Int. J. Heat Mass Transfer
,
65
, pp.
177
191
.10.1016/j.ijheatfluidflow.2017.04.011
25.
Lakhera
,
V. J.
,
Gupta
,
A.
, and
Kumar
,
R.
,
2009
, “
Investigation of Coated Tubes in Cross-Flow Boiling
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
908
920
.10.1016/j.ijheatmasstransfer.2008.06.044
26.
Pan
,
Z. H.
,
Shen
,
Y.
, and
Wu
,
H. Y.
,
2020
, “
Saturated Flow Boiling of Isolated Seed Bubble Across a Heated Square Cylinder in Two-Dimensional Microchannel
,”
Int. J. Heat Mass Transfer
,
157
, p.
119885
.10.1016/j.ijheatmasstransfer.2020.119885
27.
Price
,
S. J.
,
Sumner
,
D.
,
Smith
,
J. G.
,
Leong
,
K.
, and
Paidoussis
,
M. P.
,
2002
, “
Flow Visualization Around a Circular Cylinder Near to a Plane Wall
,”
J. Fluids Struct.
,
16
(
2
), pp.
175
191
.10.1006/jfls.2001.0413
You do not currently have access to this content.