Abstract

The heat transport within living biological tissue is a complicated process coupled with various physiological activities. The nonhomogeneous inner anatomical structure leads to an essential difference from classical heat transfer. The generalized model of bioheat transfer involving the relaxation mechanism as well as nonequilibrium heat transfer is first proposed to explore the heat transport properties within living biological tissues. Due to the volume averaging theory, the new local instantaneous energy equations of blood and tissue are constructed separately by introducing the phase lags, in which the delay effect between the heat flux and temperature gradient absent in existing generalized models is considered. The effective phase lags covering the delay effect and nonequilibrium effect are obtained on this basis. A detailed parametric study has been conducted to estimate the values of these effective phase lags and evaluate their contributions on heat transport within living biological tissues. The results state that the effective phase lags depend on the anatomical structure of tissues and its physical properties. The delay effect is dominated in general and has a higher temperature elevation than that induced by nonequilibrium effect only.

References

1.
Martin
,
N. A.
, and
Falder
,
S.
,
2017
, “
A Review of the Evidence for Threshold of Burn Injury
,”
Burns
,
43
(
8
), pp.
1624
1639
.10.1016/j.burns.2017.04.003
2.
Andreozzi
,
A.
,
Brunese
,
L.
,
Iasiello
,
M.
,
Tucci
,
C.
, and
Vanoli
,
P.
,
2019
, “
Modeling Heat Transfer in Tumors: A Review of Thermal Therapies
,”
Ann. Biomed. Eng.
,
47
(
3
), pp.
676
693
.10.1007/s10439-018-02177-x
3.
Liu
,
K. C.
, and
Chen
,
T. M.
,
2021
, “
Comparative Study of Heat Transfer and Thermal Damage Assessment Models for Hyperthermia Treatment
,”
J. Therm. Biol.
,
98
, p.
102907
.10.1016/j.jtherbio.2021.102907
4.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperature in the Resting Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.10.1152/jappl.1948.1.2.93
5.
Bhowmik
,
A.
,
Singh
,
R.
,
Repaka
,
R.
, and
Mishra
,
S. C.
,
2013
, “
Conventional and Newly Developed Bioheat Transport Models in Vascularized Tissues: A Review
,”
J. Therm. Biol.
,
38
(
3
), pp.
107
125
.10.1016/j.jtherbio.2012.12.003
6.
Xu
,
F.
,
Seffen
,
K. A.
, and
Lu
,
T. J.
,
2008
, “
Non-Fourier Analysis of Skin Biothermomechanics
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2237
2259
.10.1016/j.ijheatmasstransfer.2007.10.024
7.
Kaminski
,
W.
,
1990
, “
Hyperbolic Heat Conduction Equation for Materials With a Nonhomogeneous Inner Structure
,”
ASME J. Heat Transfer-Trans. ASME
,
112
(
3
), pp.
555
560
.10.1115/1.2910422
8.
Liu
,
J.
,
Chen
,
X.
, and
Xu
,
L. X.
,
1999
, “
New Thermal Wave Aspects on Burn Evaluation of Skin Subjected to Instantaneous Heating
,”
IEEE Trans. Biomed. Eng.
,
46
, pp.
420
428
.10.1109/10.752939
9.
Askarizadeh
,
H.
, and
Ahmadikia
,
H.
,
2014
, “
Analytical Analysis of the Dual-Phase-Lag Model of Bio-Heat Transfer Equation During Transient Heating of Skin Tissue
,”
Heat Mass Transfer
,
50
(
12
), pp.
1673
1684
.10.1007/s00231-014-1373-6
10.
Hobiny
,
A. D.
, and
Abbas
,
I. A.
,
2018
, “
Theoretical Analysis of Thermal Damages in Skin Tissue Induced by Intense Moving Heat Source
,”
Int. J. Heat Mass Transfer
,
124
, pp.
1011
1014
.10.1016/j.ijheatmasstransfer.2018.04.018
11.
Zhang
,
Y. W.
,
2009
, “
Generalized Dual-Phase Lag Bioheat Equations Based on Nonequilibrium Heat Transfer in Living Biological Tissues
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
4829
4834
.10.1016/j.ijheatmasstransfer.2009.06.007
12.
Roetzel
,
W.
, and
Xuan
,
Y. M.
,
1998
, “
Transient Response of the Human Limb to an External Stimulus
,”
Int. J. Heat Mass Transfer
,
41
(
1
), pp.
229
239
.10.1016/S0017-9310(96)00160-3
13.
Shih
,
T. C.
,
Kou
,
H. S.
,
Liauh
,
C. T.
, and
Lin
,
W. L.
,
2002
, “
Thermal Models of Bioheat Transfer Equations in Living Tissue and Thermal Dose Equivalence Due to Hyperthermia
,”
Biomed. Eng. Appl. Basis Commun.
,
14
(
02
), pp.
86
96
.10.4015/S1016237202000139
14.
Nakayama
,
A.
, and
Kuwahara
,
F.
,
2008
, “
A Generalized Bioheat Transfer Model Based on the Theory of Porous Media
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
3190
3199
.10.1016/j.ijheatmasstransfer.2007.05.030
15.
Xuan
,
Y. M.
, and
Roetzel
,
W.
,
1997
, “
Bioheat Equation of the Human Thermal System
,”
Chem. Eng. Technol.
,
20
(
4
), pp.
268
276
.10.1002/ceat.270200407
16.
Minkowycz
,
W. J.
,
Haji-Sheikh
,
A.
, and
Vafai
,
K.
,
1999
, “
On Departure From Local Thermal Equilibrium in Porous Media Due to a Rapidly Changing Heat Source: The Sparrow Number
,”
Int. J. Heat Mass Transfer
,
42
(
18
), pp.
3373
3385
.10.1016/S0017-9310(99)00043-5
17.
Liu
,
K. C.
, and
Chen
,
H. T.
,
2015
, “
Analysis of the Bioheat Transfer Problem With Pulse Boundary Heat Flux Using a Generalized Dual-Phase-Lag Model
,”
Int. Commun. Heat Mass Transfer
,
65
, pp.
31
36
.10.1016/j.icheatmasstransfer.2015.04.004
18.
Liu
,
K. C.
, and
Chen
,
T. M.
,
2018
, “
Analysis of the Thermal Response and Requirement for Power Dissipation in Magnetic Hyperthermia With the Effect of Blood Temperature
,”
Int. J. Heat Mass Transfer
,
126
(
P.T.B
), pp.
1048
1056
.10.1016/j.ijheatmasstransfer.2018.06.024
19.
Tzou
,
D. Y.
,
1995
, “
The Generalized Lagging Response in Small-Scale and High-Rate Heating
,”
Int. J. Heat Mass Transfer
,
38
(
17
), pp.
3232
3240
.10.1016/0017-9310(95)00052-B
20.
Khaled
,
A. R. A.
, and
Vafai
,
K.
,
2003
, “
The Role of Porous Media in Modeling Flow and Heat Transfer in Biological Tissues
,”
Int. J. Heat Mass Transfer
,
46
(
26
), pp.
4989
5003
.10.1016/S0017-9310(03)00301-6
21.
Yuan
,
P.
,
2009
, “
Numerical Analysis of an Equivalent Heat Transfer Coefficient in a Porous Model for Simulating a Biological Tissue in a Hyperthermia Therapy
,”
Int. J. Heat Mass Transfer
,
52
(
7–8
), pp.
1734
1740
.10.1016/j.ijheatmasstransfer.2008.09.033
22.
Baish
,
J. W.
,
Foster
,
K. R.
, and
Ayyaswamy
,
P. S.
,
1986
, “
Perfused Phantom Models of Microwave Irradiated Tissues
,”
ASME J. Biomech. Eng.
,
108
(
3
), pp.
239
245
.10.1115/1.3138609
23.
Balla
,
M.
,
1991
, “
Analytical Study of the Thermal Shock Problem of a Half-Space With Various Thermoelastic Models
,”
Acta Mech.
,
89
(
1–4
), pp.
73
92
.10.1007/BF01171248
24.
Wang
,
Y. Z.
,
Zhang
,
X. B.
, and
Song
,
X. N.
,
2012
, “
A Unified Generalized Thermoelasticity Solution for the Transient Thermal Shock Problem
,”
Acta Mech.
,
223
(
4
), pp.
735
743
.10.1007/s00707-011-0597-5
25.
Wang
,
Y. Z.
,
Li
,
M. J.
, and
Liu
,
D.
,
2021
, “
Thermo-Mechanical Interaction on Transient Heating of Skin Tissue With Variable Thermal Material Properties
,”
Eur. J. Mech. A-Solid
,
86
, p.
104173
.10.1016/j.euromechsol.2020.104173
26.
Wang
,
Y. Z.
,
Li
,
M. J.
, and
Liu
,
D.
,
2020
, “
Analytical Analysis of the Dual-Phase-Lag Model of Bio-Heat Transfer With Pulse Boundary Heat Flux on Skin Tissue
,”
Wave
Random Complex.10.1080/17455030.2020.1842552
You do not currently have access to this content.