Abstract

This study explores thermal design aspects of nanowarming-assisted recovery of the heart from indefinite cryogenic storage, where nanowarming is the volumetric heating effect of ferromagnetic nanoparticles excited by a radio frequency electromagnet field. This study uses computational means while focusing on the human heart and the rat heart models. The underlying nanoparticle loading characteristics are adapted from a recent, proof-of-concept experimental study. While uniformly distributed nanoparticles can lead to uniform rewarming, and thereby minimize adverse effects associated with ice crystallization and thermomechanical stress, the combined effects of heart anatomy and nanoparticle loading limitations present practical challenges which this study comes to address. Results of this study demonstrate that under such combined effects, nonuniform nanoparticles warming may lead to a subcritical rewarming rate in some parts of the domain, excessive heating in others, and increased exposure potential to cryoprotective agents (CPAs) toxicity. Nonetheless, the results of this study also demonstrate that computerized planning of the cryopreservation protocol and container design can help mitigate the associated adverse effects, with examples relating to adjusting the CPA and/or nanoparticle concentration, and selecting heart container geometry, and size. In conclusion, nanowarming may provide superior conditions for organ recovery from cryogenic storage under carefully selected conditions, which comes with an elevated complexity of protocol planning and optimization.

References

1.
Giwa
,
S.
,
Lewis
,
J. K.
,
Alvarez
,
L.
,
Langer
,
R.
,
Roth
,
A. E.
,
Church
,
G. M.
,
Markmann
,
J. F.
,
Sachs
,
D. H.
,
Chandraker
,
A.
,
Wertheim
,
J. A.
,
Rothblatt
,
M.
,
Boyden
,
E. S.
,
Eidbo
,
E.
,
Lee
,
W. P. A.
,
Pomahac
,
B.
,
Brandacher
,
G.
,
Weinstock
,
D. M.
,
Elliott
,
G.
,
Nelson
,
D.
,
Acker
,
J. P.
,
Uygun
,
K.
,
Schmalz
,
B.
,
Weegman
,
B. P.
,
Tocchio
,
A.
,
Fahy
,
G. M.
,
Storey
,
K. B.
,
Rubinsky
,
B.
,
Bischof
,
J.
,
Elliott
,
J. A. W.
,
Woodruff
,
T. K.
,
Morris
,
G. J.
,
Demirci
,
U.
,
Brockbank
,
K. G. M.
,
Woods
,
E. J.
,
Ben
,
R. N.
,
Baust
,
J. G.
,
Gao
,
D.
,
Fuller
,
B.
,
Rabin
,
Y.
,
Kravitz
,
D. C.
,
Taylor
,
M. J.
, and
Toner
,
M.
,
2017
, “
The Promise of Organ and Tissue Preservation to Transform Medicine
,”
Nat. Biotechnol.
,
35
(
6
), pp.
530
542
.10.1038/nbt.3889
2.
Lewis
,
J. K.
,
Bischof
,
J. C.
,
Braslavsky
,
I.
,
Brockbank
,
K. G. M.
,
Fahy
,
G. M.
,
Fuller
,
B. J.
,
Rabin
,
Y.
,
Tocchio
,
A.
,
Woods
,
E. J.
,
Wowk
,
B. G.
,
Acker
,
J. P.
, and
Giwa
,
S.
,
2016
, “
The Grand Challenges of Organ Banking: Proceedings From the First Global Summit on Complex Tissue Cryopreservation
,”
Cryobiology
,
72
(
2
), pp.
169
182
.10.1016/j.cryobiol.2015.12.001
3.
Campbell
,
B. K.
,
Hernandez-Medrano
,
J.
,
Onions
,
V.
,
Pincott-Allen
,
C.
,
Aljaser
,
F.
,
Fisher
,
J.
,
McNeilly
,
A. S.
,
Webb
,
R.
, and
Picton
,
H. M.
,
2014
, “
Restoration of Ovarian Function and Natural Fertility Following the Cryopreservation and Autotransplantation of Whole Adult Sheep Ovaries
,”
Hum. Reprod.
,
29
(
8
), pp.
1749
1763
.10.1093/humrep/deu144
4.
Mazur
,
P.
,
1984
, “
Freezing of Living Cells: Mechanisms and Implications
,”
Am. J. Physiol
,
247
(
3 Pt 1
), p.
4
. 10.1152/ajpcell.1984.247.3.C125
5.
Lakey
,
J. R. T.
,
Anderson
,
T. J.
, and
Rajotte
,
R. V.
,
2001
, “
Novel Approaches to Cryopreservation of Human Pancreatic Islets
,”
Transplantation
,
72
(
6
), pp.
1005
1011
.10.1097/00007890-200109270-00005
6.
Elami
,
A.
,
Gavish
,
Z.
,
Korach
,
A.
,
Houminer
,
E.
,
Schneider
,
A.
,
Schwalb
,
H.
, and
Arav
,
A.
,
2008
, “
Successful Restoration of Function of Frozen and Thawed Isolated Rat Hearts
,”
J. Thorac. Cardiovasc. Surg.
,
135
(
3
), pp.
666
673
.10.1016/j.jtcvs.2007.08.056
7.
Wang
,
Z.
,
He
,
B.
,
Duan
,
Y.
,
Shen
,
Y.
,
Zhu
,
L.
,
Zhu
,
X.
, and
Zhu
,
Z.
,
2014
, “
Cryopreservation and Replantation of Amputated Rat Hind Limbs
,”
Eur. J. Med. Res.
,
19
(
1
), pp.
1
9
.10.1186/2047-783X-19-28
8.
Berz
,
D.
,
McCormack
,
E. M.
,
Winer
,
E. S.
,
Colvin
,
G. A.
, and
Quesenberry
,
P. J.
,
2007
, “
Cryopreservation of Hematopoietic Stem Cells
,”
Am. J. Hematol.
,
82
(
6
), pp.
463
472
.10.1002/ajh.20707
9.
Hunt
,
C. J.
,
2011
, “
Cryopreservation of Human Stem Cells for Clinical Application: A Review
,”
Transfus. Med. Hemotherapy
,
38
(
2
), pp.
107
123
.10.1159/000326623
10.
Basu
,
P. K.
,
1995
, “
A Review of Methods for Storage of Corneas for Keratoplasty
,”
Indian J. Ophthalmol.
,
43
(
2
), pp.
55
58
.https://www.ijo.in/text.asp?1995/43/2/55/25257
11.
Kenmochi
,
T.
,
Asano
,
T.
,
Maruyama
,
M.
,
Saigo
,
K.
,
Akutsu
,
N.
,
Iwashita
,
C.
,
Ohtsuki
,
K.
,
Suzuki
,
A.
, and
Miyazaki
,
M.
,
2008
, “
Cryopreservation of Human Pancreatic Islets From Non-Heart-Beating Donors Using Hydroxyethyl Starch and Dimethyl Sulfoxide as Cryoprotectants
,”
Cell Transplant.
,
17
(
1–2
), pp.
61
67
.10.3727/000000008783907026
12.
Baicu
,
S.
,
Taylor
,
M. J.
,
Chen
,
Z.
, and
Rabin
,
Y.
,
2008
, “
Cryopreservation of Carotid Artery Segments Via Vitrification Subject to Marginal Thermal Conditions: Correlation of Freezing Visualization With Functional Recovery
,”
Cryobiology
,
57
(
1
), pp.
1
8
.10.1016/j.cryobiol.2008.03.002
13.
Fahy
,
G. M.
,
Wowk
,
B.
,
Wu
,
J.
,
Phan
,
J.
,
Rasch
,
C.
,
Chang
,
A.
, and
Zendejas
,
E.
,
2004
, “
Cryopreservation of Organs by Vitrification: Perspectives and Recent Advances
,”
Cryobiology
,
48
(
2
), pp.
157
178
.10.1016/j.cryobiol.2004.02.002
14.
Rall
,
W. F.
, and
Fahy
,
G. M.
,
1985
, “
Ice-Free Cryopreservation of Mouse Embryos at -196 °C by Vitrification
,”
Nature
,
313
(
6003
), pp.
573
575
.10.1038/313573a0
15.
Fahy
,
G. M.
,
MacFarlane
,
D. R.
,
Angell
,
C. A.
, and
Meryman
,
H. T.
,
1984
, “
Vitrification as an Approach to Cryopreservation
,”
Cryobiology
,
21
(
4
), pp.
407
426
.10.1016/0011-2240(84)90079-8
16.
Wowk
,
B.
,
2010
, “
Thermodynamic Aspects of Vitrification
,”
Cryobiology
,
60
(
1
), pp.
11
22
.10.1016/j.cryobiol.2009.05.007
17.
Joshi
,
P.
, and
Rabin
,
Y.
,
2021
, “
Analysis of Crystallization During Rewarming in Suboptimal Vitrification Conditions: A Semi-Empirical Approach
,”
Cryobiology
, in press.10.1016/j.cryobiol.2021.09.007
18.
Solanki
,
P. K.
,
Bischof
,
J. C.
, and
Rabin
,
Y.
,
2017
, “
Thermo-Mechanical Stress Analysis of Cryopreservation in Cryobags and the Potential Benefit of Nanowarming
,”
Cryobiology
,
76
, pp.
129
139
.10.1016/j.cryobiol.2017.02.001
19.
Eisenberg
,
D. P.
,
Bischof
,
J. C.
, and
Rabin
,
Y.
,
2016
, “
Thermomechanical Stress in Cryopreservation Via Vitrification With Nanoparticle Heating as a Stress-Moderating Effect
,”
ASME J. Biomech. Eng.
,
138
(
1
), pp.
1
8
.https://doi.org/10.1115/1.4032053
20.
Eisenberg
,
D. P.
,
Steif
,
P. S.
, and
Rabin
,
Y.
,
2014
, “
On the Effects of Thermal History on the Development and Relaxation of Thermo-Mechanical Stress in Cryopreservation
,”
Cryog. (Guildf.)
,
64
, pp.
86
94
.10.1016/j.cryogenics.2014.09.005
21.
Wusteman
,
M.
,
Robinson
,
M.
, and
Pegg
,
D.
,
2004
, “
Vitrification of Large Tissues With Dielectric Warming: Biological Problems and Some Approaches to Their Solution
,”
Cryobiology
,
48
(
2
), pp.
179
189
.10.1016/j.cryobiol.2004.01.002
22.
Robinson
,
M. P.
,
Wusteman
,
M. C.
,
Wang
,
L.
, and
Pegg
,
D. E.
,
2002
, “
Electromagnetic Re-Warming of Cryopreserved Tissues: Effect of Choice of Cryoprotectant and Sample Shape on Uniformity of Heating
,”
Phys. Med. Biol.
,
47
(
13
), pp.
2311
2325
.10.1088/0031-9155/47/13/309
23.
Ruggera
,
P. S.
, and
Fahy
,
G. M.
,
1990
, “
Rapid and Uniform Electromagnetic Heating of Aqueous Cryoprotectant Solutions From Cryogenic Temperatures
,”
Cryobiology
,
27
(
5
), pp.
465
478
.10.1016/0011-2240(90)90035-3
24.
Etheridge
,
M. L.
, and
Bischof
,
J. C.
,
2013
, “
Optimizing Magnetic Nanoparticle Based Thermal Therapies Within the Physical Limits of Heating
,”
Ann. Biomed. Eng.
,
41
(
1
), pp.
78
88
.10.1007/s10439-012-0633-1
25.
Etheridge
,
M. L.
,
Xu
,
Y.
,
Rott
,
L.
,
Choi
,
J.
,
Glasmacher
,
B.
, and
Bischof
,
J. C.
,
2014
, “
RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials
,”
Technology
,
02
(
03
), pp.
229
242
.10.1142/S2339547814500204
26.
Manuchehrabadi
,
N.
,
Gao
,
Z.
,
Zhang
,
J.
,
Ring
,
H. L.
,
Shao
,
Q.
,
Liu
,
F.
,
McDermott
,
M.
,
Fok
,
A.
,
Rabin
,
Y.
,
Brockbank
,
K. G. M.
,
Garwood
,
M.
,
Haynes
,
C. L.
, and
Bischof
,
J. C.
,
2017
, “
Improved Tissue Cryopreservation Using Inductive Heating of Magnetic Nanoparticles
,”
Sci. Transl. Med.
,
9
(
379
), p.
eaah4586
.10.1126/scitranslmed.aah4586
27.
Sharma
,
A.
,
Rao
,
J. S.
,
Han
,
Z.
,
Gangwar
,
L.
,
Namsrai
,
B.
,
Gao
,
Z.
,
Ring
,
H. L.
,
Magnuson
,
E.
,
Etheridge
,
M.
,
Wowk
,
B.
,
Fahy
,
G. M.
,
Garwood
,
M.
,
Finger
,
E. B.
, and
Bischof
,
J. C.
,
2021
, “
Vitrification and Nanowarming of Kidneys
,”
Adv. Sci.
,
8
(
19
), p.
2101691
.10.1002/advs.202101691
28.
Chiu-Lam
,
A.
,
Staples
,
E.
,
Pepine
,
C. J.
, and
Rinaldi
,
C.
,
2021
, “
Perfusion, Cryopreservation, and Nanowarming of Whole Hearts Using Colloidally Stable Magnetic Cryopreservation Agent Solutions
,”
Sci. Adv.
,
7
(
2
), p.
eabe3005
.10.1126/sciadv.abe3005
29.
Gao
,
Z.
,
Namsrai
,
B.
,
Han
,
Z.
,
Joshi
,
P.
,
Rao
,
J. S.
,
Ravikumar
,
V.
,
Sharma
,
A.
,
Ring
,
H. L.
,
Idiyatullin
,
D.
,
Magnuson
,
E. C.
,
Iaizzo
,
P. A.
,
Tolkacheva
,
E. G.
,
Garwood
,
M.
,
Rabin
,
Y.
,
Etheridge
,
M.
,
Finger
,
E. B.
, and
Bischof
,
J. C.
,
2021
, “
Vitrification and Rewarming of Magnetic Nanoparticle‐Loaded Rat Hearts
,”
Adv. Mater. Technol.
, p.
2100873
.10.1002/admt.202100873
30.
Solanki
,
P. K.
, and
Rabin
,
Y.
,
2021
, “
Thermomechanical Stress Analysis of Rabbit Kidney and Human Kidney During Cryopreservation by Vitrification With the Application of Radiofrequency Heating
,”
Cryobiology
,
100
, pp.
180
192
.10.1016/j.cryobiol.2021.01.002
31.
Gao
,
Z.
,
Ring
,
H. L.
,
Sharma
,
A.
,
Namsrai
,
B.
,
Tran
,
N.
,
Finger
,
E. B.
,
Garwood
,
M.
,
Haynes
,
C. L.
, and
Bischof
,
J. C.
,
2020
, “
Preparation of Scalable Silica-Coated Iron Oxide Nanoparticles for Nanowarming
,”
Adv. Sci.
,
7
(
4
), p.
1901624
.10.1002/advs.201901624
32.
Ring
,
H. L.
,
Sharma
,
A.
,
Ivkov
,
R.
, and
Bischof
,
J. C.
,
2020
, “
The Impact of Data Selection and Fitting on SAR Estimation for Magnetic Nanoparticle Heating
,”
Int. J. Hyperth.
,
37
(
3
), pp.
100
107
.10.1080/02656736.2020.1810332
33.
Zhang
,
J.
,
Chamberlain
,
R.
,
Etheridge
,
M.
,
Idiyatullin
,
D.
,
Corum
,
C.
,
Bischof
,
J.
, and
Garwood
,
M.
,
2014
, “
Quantifying Iron-Oxide Nanoparticles at High Concentration Based on Longitudinal Relaxation Using a Three-Dimensional SWIFT Look-Locker Sequence
,”
Magn. Reson. Med.
,
71
(
6
), pp.
1982
1988
.10.1002/mrm.25181
34.
Zhang
,
J.
,
Ring
,
H. L.
,
Hurley
,
K. R.
,
Shao
,
Q.
,
Carlson
,
C. S.
,
Idiyatullin
,
D.
,
Manuchehrabadi
,
N.
,
Hoopes
,
P. J.
,
Haynes
,
C. L.
,
Bischof
,
J. C.
, and
Garwood
,
M.
,
2017
, “
Quantification and Biodistribution of Iron Oxide Nanoparticles in the Primary Clearance Organs of Mice Using T1 Contrast for Heating
,”
Magn. Reson. Med.
,
78
(
2
), pp.
702
712
.10.1002/mrm.26394
35.
University of Minnesota, “Heart Histories | Atlas of Human Cardiac Anatomy,” accessed Dec. 14, 2021, http://www.vhlab.umn.edu/atlas/histories/histories.shtml
36.
Clement
,
C. H.
, ed.,
2009
,
Adult Reference Computational Phantoms
, ICRP Publication 110, Ann. ICRP 39(2).
37.
Vinnakota
,
K. C.
, and
Bassingthwaighte
,
J. B.
,
2004
, “
Myocardial Density and Composition: A Basis for Calculating Intracellular Metabolite Concentrations
,”
Am. J. Physiol. Hear. Circ. Physiol.
,
286
(
5 55-5
), pp.
1742
1749
.10.1152/ajpheart.00478.2003.Myocardial
38.
Tanase
,
H.
,
Yamori
,
Y.
,
Hansen
,
C. T.
, and
Lovenberg
,
W.
,
1982
, “
Heart Size in Inbred Strains of Rats
,”
Hypertension
,
4
(
6
), pp.
864
873
.10.1161/01.HYP.4.6.864
39.
Kusunose
,
K.
,
Penn
,
M. S.
,
Zhang
,
Y.
,
Cheng
,
Y.
,
Thomas
,
J. D.
,
Marwick
,
T. H.
,
Popović
,
Z. B.
, and
Popović
,
P.
,
2012
, “
How Similar Are the Mice to Men? Between-Species Comparison of Left Ventricular Mechanics Using Strain Imaging
,”
PLoS One
,
7
(
6
), p.
e40061
.10.1371/journal.pone.0040061
40.
Kaese
,
S.
, and
Verheule
,
S.
,
2012
, “
Cardiac Electrophysiology in Mice: A Matter of Size
,”
Front. Physiol.
,
3
, p.
345
.10.3389/fphys.2012.00345
41.
Papadimitriou
,
D.
,
Xanthos
,
T.
,
Dontas
,
I.
,
Lelovas
,
P.
, and
Perrea
,
D.
,
2008
, “
The Use of Mice and Rats as Animal Models for Cardiopulmonary Resuscitation Research
,”
Lab. Anim.
,
42
(
3
), pp.
265
276
.10.1258/la.2007.006035
42.
Feig
,
J. S. G.
,
Solanki
,
P. K.
,
Eisenberg
,
D. P.
, and
Rabin
,
Y.
,
2016
, “
Polarized Light Scanning Cryomacroscopy, Part II: Thermal Modeling and Analysis of Experimental Observations
,”
Cryobiology
,
73
(
2
), pp.
272
281
.10.1016/j.cryobiol.2016.06.004
43.
Ehrlich
,
L. E.
,
Malen
,
J. A.
, and
Rabin
,
Y.
,
2016
, “
Cryobiology Thermal Conductivity of the Cryoprotective Cocktail DP6 in Cryogenic Temperatures, in the Presence and Absence of Synthetic Ice Modulators
,”
Cryobiology
,
73
(
2
), pp.
196
202
.10.1016/j.cryobiol.2016.07.012
44.
Phatak
,
S.
,
Natesan
,
H.
,
Choi
,
J.
,
Brockbank
,
K. G. M.
, and
Bischof
,
J. C.
,
2018
, “
Measurement of Specific Heat and Crystallization in VS55, DP6, and M22 Cryoprotectant Systems With and Without Sucrose
,”
Biopreserv. Biobank
,
16
(
4
), pp.
270
277
.10.1089/bio.2018.0006
45.
Wowk
,
B.
,
Fahy
,
G. M.
,
Ahmedyar
,
S.
,
Taylor
,
M. J.
, and
Rabin
,
Y.
,
2018
, “
Vitrification Tendency and Stability of DP6-Based Vitrification Solutions for Complex Tissue Cryopreservation
,”
Cryobiology
,
82
, pp.
70
77
.10.1016/j.cryobiol.2018.04.006
46.
Gaur
,
U.
,
Lau
,
S. F.
,
Wunderlich
,
B. B.
, and
Wunderlich
,
B.
,
1983
, “
Heat Capacity and Other Thermodynamic Properties of Linear Macromolecules. VIII. Polyesters and Polyamides
,”
J. Phys. Chem. Ref. Data
,
12
(
1
), pp.
65
89
.10.1063/1.555678
47.
Sheldon
,
R. P.
, and
Lane
,
S. K.
,
1965
, “
Thermal Conductivities of Polymers II-Polyethylene
,”
Polymer (Guildford)
,
6
(
4
), pp.
205
212
.10.1016/0032-3861(65)90042-X
48.
Rios
,
J. L. J.
, and
Rabin
,
Y.
,
2006
, “
Thermal Expansion of Blood Vessels in Low Cryogenic Temperatures, Part II—Vitrification VS55, DP6, 7.05 M DMSO
,”
Cryobiology
,
52
(
2
), pp.
284
294
.10.1016/j.cryobiol.2005.12.006
49.
Zhang
,
X.
,
Hendro
,
W.
,
Fujii
,
M.
,
Tomimura
,
T.
, and
Imaishi
,
N.
,
2002
, “
Measurements of the Thermal Conductivity and Thermal Diffusivity of Polymer Melts With the Short-Hot-Wire Method
,”
Int. J. Thermophys.
,
23
(
4
), pp.
1077
1090
.10.1023/A:1016394104244
50.
Ehrlich
,
L. E.
,
Gao
,
Z.
,
Bischof
,
J. C.
, and
Rabin
,
Y.
,
2020
, “
Thermal Conductivity of Cryoprotective Agents Loaded With Nanoparticles, With Application to Recovery of Preserved Tissues and Organs From Cryogenic Storage
,”
PLoS One
,
15
(
9
), p.
e0238941
.10.1371/journal.pone.0238941
51.
Mehl
,
P. M.
,
1993
, “
Nucleation and Crystal Growth in a Vitrification Solution Tested for Organ Cryopreservation by Vitrification
,”
Cryobiology
,
30
(
5
), pp.
509
518
.10.1006/cryo.1993.1051
52.
Ehrlich
,
L. E.
,
Fahy
,
G. M.
,
Wowk
,
B. G.
,
Malen
,
J. A.
, and
Rabin
,
Y.
,
2018
, “
Thermal Analyses of a Human Kidney and a Rabbit Kidney During Cryopreservation by Vitrification
,”
ASME J. Biomech. Eng.
,
140
(
1
), p.
011005
.10.1115/1.4037406
53.
Solanki
,
P. K.
, and
Rabin
,
Y.
,
2020
, “
Scaling Effects on the Residual Thermomechanical Stress During Ice-Free Cooling to Storage Temperature
,”
ASME J. Appl. Mech.
,
87
(
10
), p.
101003
.10.1115/1.4047420
54.
Peyridieu
,
J. F.
,
Baudot
,
A.
,
Boutron
,
P.
,
Mazuer
,
J.
,
Odin
,
J.
,
Ray
,
A.
,
Chapelier
,
E.
,
Payen
,
E.
, and
Descotes
,
J. L.
,
1996
, “
Critical Cooling and Warming Rates to Avoid Ice Crystallization in Small Pieces of Mammalian Organs Permeated With Cryoprotective Agents
,”
Cryobiology
,
33
(
4
), pp.
436
446
.10.1006/cryo.1996.0044
55.
Clark
,
P.
,
Fahy
,
G. M.
, and
Karow
,
A. M.
,
1984
, “
Factors Influencing Renal Cryopreservation: II—Toxic Effects of Three Cryoprotectants in Combination With Three Vehicle Solutions in Nonfrozen Rabbit Cortical Slices
,”
Cryobiology
,
21
(
3
), pp.
274
284
.10.1016/0011-2240(84)90323-7
56.
Arakawa
,
T.
,
Carpenter
,
J. F.
,
Kita
,
Y. A.
, and
Crowe
,
J. H.
,
1990
, “
The Basis for Toxicity of Certain Cryoprotectants: A Hypothesis
,”
Cryobiology
,
27
(
4
), pp.
401
415
.10.1016/0011-2240(90)90017-X
57.
Farrant
,
J.
,
1965
, “
Mechanism of Cell Damage During Freezing and Thawing and Its Prevention
,”
Nature
,
205
(
4978
), pp.
1284
1287
.10.1038/2051284a0
58.
Wang
,
L.
,
Pegg
,
D. E.
,
Lorrison
,
J.
,
Vaughan
,
D.
, and
Rooney
,
P.
,
2007
, “
Further Work on the Cryopreservation of Articular Cartilage With Particular Reference to the Liquidus Tracking (LT) Method
,”
Cryobiology
,
55
(
2
), pp.
138
147
.10.1016/j.cryobiol.2007.06.005
59.
Puschmann
,
E.
,
Selden
,
C.
,
Butler
,
S.
, and
Fuller
,
B.
,
2017
, “
Liquidus Tracking: Large Scale Preservation of Encapsulated 3-D Cell Cultures Using a Vitrification Machine
,”
Cryobiology
,
76
, pp.
65
73
.10.1016/j.cryobiol.2017.04.006
60.
Benson
,
J. D.
,
Higgins
,
A. Z.
,
Desai
,
K.
, and
Eroglu
,
A.
,
2018
, “
A Toxicity Cost Function Approach to Optimal CPA Equilibration in Tissues
,”
Cryobiology
,
80
, pp.
144
155
.10.1016/j.cryobiol.2017.09.005
61.
Davidson
,
A. F.
,
Glasscock
,
C.
,
Mcclanahan
,
D. R.
,
Benson
,
J. D.
, and
Higgins
,
A. Z.
,
2015
, “
Toxicity Minimized Cryoprotectant Addition and Removal Procedures for Adherent Endothelial Cells
,”
PLoS One
,
10
(
11
), p.
e0142828
.10.1371/journal.pone.0142828
You do not currently have access to this content.