Abstract

In this work, effects of tumor shape on magnetic nanoparticle hyperthermia (MNPH) are investigated and evaluated using four categories (spherical, oblate, prolate, and egg-shape) of tumor models having different morphologies. These tumors have equal volume; however, due to the differences in their shapes, they have different surface areas. The shape of tumors is quantified in terms of shape factor (ζ). Simulations for MNPH are done on the physical model constituting tumor tissue enclosed within the healthy tissue. Magnetic hyperthermia is applied (frequency 150 kHz, and magnetic field amplitude 20.5 kA/m) to all tumor models, for 1 h, after injection of magnetic nanoparticles (MNPs) at the respective tumor centroids. The distribution of MNPs after injection is considered Gaussian. The governing model (Pennes' bioheat model) of heat transfer in biological media is solved with the finite volume-immersed boundary (FV-IB) method to simulate MNPH. Therapeutic effects are calculated using the Arrhenius tissue damage model, cumulative equivalent minutes at 43 °C (CEM 43), and heterogeneity in temperature profiles of the tumors. Results show that the therapeutic effects of MNPH depend significantly on the shape of a tumor. Tumors with higher shape factors receive less therapeutic effects in comparison to the tumors having lower shape factors. An empirical thermal damage model is also developed to assess the MNPH efficacy in real complex-shaped tumors.

References

1.
Zee
,
J. V. D.
,
2002
, “
Heating the Patient: A Promising Approach?
,”
Ann. Oncol.
,
13
(
8
), pp.
1173
1184
.10.1093/annonc/mdf280
2.
Kumar
,
C. S.
, and
Mohammad
,
F.
,
2011
, “
Magnetic Nanomaterials for Hyperthermia-Based Therapy and Controlled Drug Delivery
,”
Adv. Drug Deliv. Rev.
,
63
(
9
), pp.
789
808
.10.1016/j.addr.2011.03.008
3.
Yarmolenko
,
P. S.
,
Moon
,
E. J.
,
Landon
,
C.
,
Manzoor
,
A.
,
Hochman
,
D. W.
,
Viglianti
,
B. L.
, and
Dewhirst
,
M. W.
,
2011
, “
Thresholds for Thermal Damage to Normal Tissues: An Update
,”
Int. J. Hyperth.
,
27
(
4
), pp.
320
343
.10.3109/02656736.2010.534527
4.
Kandala
,
S. K.
,
Liapi
,
E.
,
Whitcomb
,
L. L.
,
Attaluri
,
A.
, and
Ivkov
,
R.
,
2019
, “
Temperature-Controlled Power Modulation Compensates for Heterogeneous Nanoparticle Distributions: A Computational Optimization Analysis for Magnetic Hyperthermia
,”
Int. J. Hyperth.
,
36
(
1
), pp.
115
129
.10.1080/02656736.2018.1538538
5.
Wust
,
P.
,
Hildebrandt
,
B.
,
Sreenivasa
,
G.
,
Rau
,
B.
,
Gellermann
,
J.
,
Riess
,
H.
,
Felix
,
R.
, and
Schlag
,
P.
,
2002
, “
Hyperthermia in Combined Treatment of Cancer
,”
Lancet Oncol.
,
3
(
8
), pp.
487
497
.10.1016/S1470-2045(02)00818-5
6.
Jin
,
C.
,
He
,
Z.
, and
Liu
,
J.
,
2015
, “
Thermal Electrical Property Effects of Bone Structure on the Magnetic-Nanoparticle Enhanced Hyperthermia Targeting Tumor Underneath the Ribs
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
9
), p.
091005
.10.1115/1.4030213
7.
Hedayatnasab
,
Z.
,
Abnisa
,
F.
, and
Daud
,
W. M. A. W.
,
2017
, “
Review on Magnetic Nanoparticles for Magnetic Nanofluid Hyperthermia Application
,”
Mater. Des.
,
123
, pp.
174
196
.10.1016/j.matdes.2017.03.036
8.
Giustini
,
A. J.
,
Petryk
,
A. A.
,
Cassim
,
S. M.
,
Tate
,
J. A.
,
Baker
,
I.
, and
Hoopes
,
P. J.
,
2010
, “
Magnetic Nanoparticle Hyperthermia in Cancer Treatment
,”
Nano LIFE
,
01
(
01n02
), pp.
17
32
.10.1142/S1793984410000067
9.
Attaluri
,
A.
,
Kandala
,
S. K.
,
Wabler
,
M.
,
Zhou
,
H.
,
Cornejo
,
C.
,
Armour
,
M.
,
Hedayati
,
M.
,
Zhang
,
Y.
,
Deweese
,
T. L.
,
Herman
,
C.
, and
Ivkov
,
R.
,
2015
, “
Magnetic Nanoparticle Hyperthermia Enhances Radiation Therapy: A Study in Mouse Models of Human Prostate Cancer
,”
Int. J. Hyperth.
,
31
(
4
), pp.
359
374
.10.3109/02656736.2015.1005178
10.
Tang
,
Y.-D.
,
Jin
,
T.
, and
Flesch
,
R. C.
,
2018
, “
Impact of Different Infusion Rates on Mass Diffusion and Treatment Temperature Field During Magnetic Hyperthermia
,”
Int. J. Heat Mass Transfer
,
124
, pp.
639
645
.10.1016/j.ijheatmasstransfer.2018.03.096
11.
Ghanem
,
N.
,
Altehoefer
,
C.
,
Furtwängler
,
A.
,
Winterer
,
J.
,
Schäfer
,
O.
,
Springer
,
O.
,
Kotter
,
E.
, and
Langer
,
M.
,
2003
, “
Computed Tomography in Gastrointestinal Stromal Tumors
,”
Eur. Radiol.
,
13
(
7
), pp.
1669
1678
.10.1007/s00330-002-1803-6
12.
Attaluri
,
A.
,
Ma
,
R.
, and
Zhu
,
L.
,
2010
, “
Using MicroCT Imaging Technique to Quantify Heat Generation Distribution Induced by Magnetic Nanoparticles for Cancer Treatments
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
1
), p.
011003
.10.1115/1.4002225
13.
Bassett
,
L. W.
, and
Lee-Felker
,
S.
,
2018
, “
Breast Imaging Screening and Diagnosis
,”
The Breast
,
K. I.
Bland
,
E. M.
Copeland
,
V. S.
Klimberg
, and
W. J.
Gradishar
, eds.,
Elsevier
, Amsterdam, The Netherlands, pp.
337
361
.10.1016/B978-0-323-35955-9.00026-X
14.
Byrd
,
B.
,
Krishnaswamy
,
V.
,
Gui
,
J.
,
Rooney
,
T.
,
Zuurbier
,
R.
,
Rosenkranz
,
K.
,
Paulsen
,
K.
, and
Barth
,
R.
,
2020
, “
The Shape of Breast Cancer
,”
Breast Cancer Res. Treat.
,
183
(
2
), pp.
403
410
.10.1007/s10549-020-05780-6
15.
Singh
,
G.
,
Kumar
,
N.
, and
Avti
,
P. K.
,
2020
, “
Computational Evaluation of Effectiveness for Intratumoral Injection Strategies in Magnetic Nanoparticle Assisted Thermotherapy
,”
Int. J. Heat Mass Transfer
,
148
, p.
119129
.10.1016/j.ijheatmasstransfer.2019.119129
16.
Soetaert
,
F.
,
Dupré
,
L.
,
Ivkov
,
R.
, and
Crevecoeur
,
G.
,
2015
, “
Computational Evaluation of Amplitude Modulation for Enhanced Magnetic Nanoparticle Hyperthermia
,”
Biomed. Eng./Biomedizinische Technik
,
60
(
5
), pp.
401
504
.10.1515/bmt-2015-0046
17.
Golneshan
,
A. A.
, and
Lahonian
,
M.
,
2011
, “
Diffusion of Magnetic Nanoparticles in a Multi-Site Injection Process Within a Biological Tissue During Magnetic Fluid Hyperthermia Using Lattice Boltzmann Method
,”
Mech. Res. Commun.
,
38
(
6
), pp.
425
430
.10.1016/j.mechrescom.2011.05.012
18.
Salloum
,
M.
,
Ma
,
R.
, and
Zhu
,
L.
,
2009
, “
Enhancement in Treatment Planning for Magnetic Nanoparticle Hyperthermia: Optimization of the Heat Absorption Pattern
,”
Int. J. Hyperth.
,
25
(
4
), pp.
309
321
.10.1080/02656730902803118
19.
Tehrani
,
M.
,
Soltani
,
M.
,
Kashkooli
,
F.
, and
Raahemifar
,
K.
,
2020
, “
Use of Microwave Ablation for Thermal Treatment of Solid Tumors With Different Shapes and Sizes—A Computational Approach
,”
PLos One
,
15
(
6
), p.
e0233219
.10.1371/journal.pone.0233219
20.
De
,
S.
,
Das
,
S.
,
Kuipers
,
J.
,
Peters
,
E.
, and
Padding
,
J.
,
2016
, “
A Coupled Finite Volume Immersed Boundary Method for Simulating 3D Viscoelastic Flows in Complex Geometries
,”
J. Nonnewtonian Fluid Mech.
,
232
, pp.
67
76
.10.1016/j.jnnfm.2016.04.002
21.
He
,
Z. Z.
,
Xue
,
X.
, and
Liu
,
J.
,
2013
, “
An Effective Finite Difference Method for Simulation of Bioheat Transfer in Irregular Tissues
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
7
), p.
071003
.10.1115/1.4024064
22.
Brierley
,
J.
,
Gospodarowicz
,
M. K.
, and
Wittekind
,
C.
,
2017
,
TNM Classification of Malignant Tumours
,
Wiley
,
Chichester, West Sussex, UK
.
23.
Byrne
,
H.
, and
Chaplain
,
M.
,
1996
, “
Modelling the Role of Cell-Cell Adhesion in the Growth and Development of Carcinomas
,”
Math. Comput. Modell.
,
24
(
12
), pp.
1
17
.10.1016/S0895-7177(96)00174-4
24.
Wu
,
J.
,
2016
, “
Stationary Solutions of a Free Boundary Problem Modeling the Growth of Tumors With Gibbs–Thomson Relation
,”
J. Differential Equations
,
260
(
7
), pp.
5875
5893
.10.1016/j.jde.2015.12.023
25.
Lu
,
M.
,
Liu
,
C.
,
Lowengrub
,
J.
, and
Li
,
S.
,
2020
, “
Complex Far-Field Geometries Determine the Stability of Solid Tumor Growth With Chemotaxis
,”
Bull. Math. Biol.
,
82
(
3
).10.1007/s11538-020-00716-z
26.
World Health Organization
,
1979
,
WHO Handbook for Reporting Results of Cancer Treatment
,
World Health Organization
,
Geneva, Switzerland
.
27.
Sefidgar
,
M.
,
Soltani
,
M.
,
Raahemifar
,
K.
,
Bazmara
,
H.
,
Nayinian
,
S. M.
, and
Bazargan
,
M.
,
2014
, “
Effect of Tumor Shape, Size, and Tissue Transport Properties on Drug Delivery to Solid Tumors
,”
J. Biol. Eng.
,
8
(
1
), p.
12
.10.1186/1754-1611-8-12
28.
Köller
,
J.
,
2019
, “
Ovals and Egg Curves
,” accessed Dec. 13, http://www.mathematische-basteleien.de/eggcurves.htm
29.
Becker
,
S. M.
, and
Kuznetsov
,
A. V.
,
2015
,
Heat Transfer and Fluid Flow in Biological Processes
,
Elsevier Science Publishing
, Academic Press, Cambridge, MA.10.1016/C2012-0-03651-4
30.
Pennes
,
H. H.
,
1948
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
1
(
2
), pp.
93
122
.10.1152/jappl.1948.1.2.93
31.
Nabaei
,
M.
, and
Karimi
,
M.
,
2018
, “
Numerical Investigation of the Effect of Vessel Size and Distance on the Cryosurgery of an Adjacent Tumor
,”
J. Therm. Biol.
,
77
, pp.
45
54
.10.1016/j.jtherbio.2018.08.001
32.
Vaupel
,
P.
,
Kallinowski
,
F.
, and
Okunieff
,
P.
,
1989
, “
Blood Flow, Oxygen and Nutrient Supply, and Metabolic Microenvironment of Human Tumors: A Review
,”
Cancer Res.
,
49
(
23
), pp.
6449
6465
.https://cancerres.aacrjournals.org/content/canres/49/23/6449.full.pdf
33.
Santos
,
I. D.
,
Haemmerich
,
D.
,
Schutt
,
D.
,
Rocha
,
A. F. D.
, and
Menezes
,
L. R.
,
2009
, “
Probabilistic Finite Element Analysis of Radiofrequency Liver Ablation Using the Unscented Transform
,”
Phys. Med. Biol.
,
54
(
3
), pp.
627
640
.10.1088/0031-9155/54/3/010
34.
Bordelon
,
D. E.
,
Cornejo
,
C.
,
Grüttner
,
C.
,
Westphal
,
F.
,
Deweese
,
T. L.
, and
Ivkov
,
R.
,
2011
, “
Magnetic Nanoparticle Heating Efficiency Reveals Magneto-Structural Differences When Characterized With Wide Ranging and High Amplitude Alternating Magnetic Fields
,”
J. Appl. Phys.
,
109
(
12
), p.
124904
.10.1063/1.3597820
35.
He
,
X.
,
Mcgee
,
S.
,
Coad
,
J. E.
,
Schmidlin
,
F.
,
Iaizzo
,
P. A.
,
Swanlund
,
D. J.
,
Kluge
,
S.
,
Rudie
,
E.
, and
Bischof
,
J. C.
,
2004
, “
Investigation of the Thermal and Tissue Injury Behaviour in Microwave Thermal Therapy Using a Porcine Kidney Model
,”
Int. J. Hyperth.
,
20
(
6
), pp.
567
593
.10.1080/0265673042000209770
36.
Pearce
,
J. A.
,
2009
, “
Relationship Between Arrhenius Models of Thermal Damage and the CEM 43 Thermal Dose
,”
Energy-Based Treat. Tissue Assess.
, 7181, p.
718104
. 10.1117/12.807999
37.
Schutt
,
D. J.
, and
Haemmerich
,
D.
,
2008
, “
Effects of Variation in Perfusion Rates and of Perfusion Models in Computational Models of Radio Frequency Tumor Ablation
,”
Med. Phys.
,
35
(
8
), pp.
3462
3470
.10.1118/1.2948388
38.
Dutz
,
S.
, and
Hergt
,
R.
,
2013
, “
Magnetic Nanoparticle Heating and Heat Transfer on a Microscale: Basic Principles, Realities and Physical Limitations of Hyperthermia for Tumour Therapy
,”
Int. J. Hyperth.
,
29
(
8
), pp.
790
800
.10.3109/02656736.2013.822993
39.
Tavill
,
A. S.
, and
Bacon
,
B. R.
,
1986
, “
Hemochromatosis: How Much Iron is Too Much?
,”
Hepatology
,
6
(
1
), pp.
142
145
.10.1002/hep.1840060128
40.
Salloum
,
M.
,
Ma
,
R.
, and
Zhu
,
L.
,
2008
, “
An in-Vivoexperimental Study of Temperature Elevations in Animal Tissue During Magnetic Nanoparticle Hyperthermia
,”
Int. J. Hyperth.
,
24
(
7
), pp.
589
601
.10.1080/02656730802203377
41.
Salloum
,
M.
,
Ma
,
R.
,
Weeks
,
D.
, and
Zhu
,
L.
,
2008
, “
Controlling Nanoparticle Delivery in Magnetic Nanoparticle Hyperthermia for Cancer Treatment: Experimental Study in Agarose Gel
,”
Int. J. Hyperth.
,
24
(
4
), pp.
337
345
.10.1080/02656730801907937
42.
Attaluri
,
A.
,
Ma
,
R.
,
Qiu
,
Y.
,
Li
,
W.
, and
Zhu
,
L.
,
2011
, “
Nanoparticle Distribution and Temperature Elevations in Prostatic Tumours in Mice During Magnetic Nanoparticle Hyperthermia
,”
Int. J. Hyperth.
,
27
(
5
), pp.
491
502
.10.3109/02656736.2011.584856
43.
Lebrun
,
A.
,
Joglekar
,
T.
,
Bieberich
,
C.
,
Ma
,
R.
, and
Zhu
,
L.
,
2017
, “
Treatment Efficacy for Validating MicroCT-Based Theoretical Simulation Approach in Magnetic Nanoparticle Hyperthermia for Cancer Treatment
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
5
), p.
051101
.10.1115/1.4035246
44.
Singh
,
G.
,
Kumar
,
N.
, and
Avti
,
P. K.
,
2019
, “
Bioheat Physics for Hyperthermia Therapy
,”
Application of Biomedical Engineering in Neuroscience
,
Springer
,
Singapore
, pp.
381
397
.
45.
Singh
,
G.
,
Kumar
,
N.
, and
Avti
,
P. K.
,
2018
, “
Effects of Spatial Distribution Patterns of Magnetic Nanoparticles on Temperature Distribution in Magnetic Hyperthermia
,”
EMF-Med First World Conference Biomedical Applications of Electromagnetic Fields (EMF-Med)
, Split, Croatia, pp.
1
2
. 10.23919/EMF-MED.2018.8526038
46.
Rhoon
,
G. C. V.
,
Samaras
,
T.
,
Yarmolenko
,
P. S.
,
Dewhirst
,
M. W.
,
Neufeld
,
E.
, and
Kuster
,
N.
,
2013
, “
CEM43 °C Thermal Dose Thresholds: A Potential Guide for Magnetic Resonance Radiofrequency Exposure Levels?
,”
Euro. Radiol.
,
23
(
8
), pp.
2215
2227
.10.1007/s00330-013-2825-y
47.
Dewhirst
,
M.
,
Stauffer
,
P. R.
,
Das
,
S.
,
Cra
,
O. I. C.
, and
Vujaskovic
,
Z.
,
2016
, “
Hyperthermia
,”
Clinical Radiation Oncology
,
L. L.
Gunderson
, and
J. E.
Tepper
, eds.,
Elsevier Health Sciences
,
China
, pp.
381
398
.
48.
Koijk
,
J. F. V. D.
,
Lagendijk
,
J. J. W.
,
Crezee
,
J.
,
Bree
,
J. D.
,
Kotte
,
A. N. T. J.
,
Leeuwen
,
G. M. V.
, and
Battermann
,
J. J.
,
1997
, “
The Influence of Vasculature on Temperature Distributions in MECS Interstitial Hyperthermia: Importance of Longitudinal Control
,”
Int. J. Hyperth.
,
13
(
4
), pp.
365
385
.10.3109/02656739709046539
49.
Mittal
,
R.
, and
Iaccarino
,
G.
,
2005
, “
Immersed Boundary Methods
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
239
261
.10.1146/annurev.fluid.37.061903.175743
50.
Strohbehn
,
J.
, and
Roemer
,
R.
,
1984
, “
A Survey of Computer Simulations of Hyperthermia Treatments
,”
IEEE Trans. Biomed. Eng.
,
BME-31
(
1
), pp.
136
149
.10.1109/TBME.1984.325380
51.
Johannsen
,
M.
,
Gneveckow
,
U.
,
Eckelt
,
L.
,
Feussner
,
A.
,
WaldÖFner
,
N.
,
Scholz
,
R.
,
Deger
,
S.
,
Wust
,
P.
,
Loening
,
S.
, and
Jordan
,
A.
,
2005
, “
Clinical Hyperthermia of Prostate Cancer Using Magnetic Nanoparticles: Presentation of a New Interstitial Technique
,”
Int. J. Hyperth.
,
21
(
7
), pp.
637
647
.10.1080/02656730500158360
52.
Lamien
,
B.
,
Barreto Orlande
,
H.
, and
Enrique Eliçabe
,
G.
,
2016
, “
Particle Filter and Approximation Error Model for State Estimation in Hyperthermia
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
1
), p.
012001
.10.1115/1.4034064
53.
Gu
,
Q.
,
Joglekar
,
T.
,
Bieberich
,
C.
,
Ma
,
R.
, and
Zhu
,
L.
,
2019
, “
Nanoparticle Redistribution in PC3 Tumors Induced by Local Heating in Magnetic Nanoparticle Hyperthermia: In Vivo Experimental Study
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
3
), p.
032402
.10.1115/1.4042298
54.
Singh
,
M.
,
Gu
,
Q.
,
Ma
,
R.
, and
Zhu
,
L.
,
2020
, “
Heating Protocol Design Affected by Nanoparticle Redistribution and Thermal Damage Model in Magnetic Nanoparticle Hyperthermia for Cancer Treatment
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
7
), p.
072501
.10.1115/1.4046967
55.
Soltani
,
M.
, and
Chen
,
P.
,
2012
, “
Effect of Tumor Shape and Size on Drug Delivery to Solid Tumors
,”
J. Biol. Eng.
,
6
(
1
), p.
4
.10.1186/1754-1611-6-4
You do not currently have access to this content.