Abstract

Pressure and thermal injuries affect millions of lives every year. Both types of injury have been a focal priority for the medical community to understand and treat, especially since World War II. Typically, each injury mechanism is studied in isolation due to differences in the primary factors causing the trauma. The serial confluence of applied tissue deformation, inflammation, and ischemia imposed over time combine to cause mechanically derived injury, whereas high or low temperatures are causative factors for thermal injuries. Modeling and simulation analyses have been used to develop an understanding of both types of injury pathways to predict threshold conditions for the onset of damage and to develop methods of prevention. Although thermal and mechanical injury processes are often viewed independently, prior experiments have demonstrated that these two phenomena may have active cross-coupling. Temperature can act as a prophylactic or accelerant to pressure injuries, depending on its magnitude, to radically alter the shape, position, time, and final disposition. In this study, we developed a finite element model to predict injury as a function of time, temperature, mechanical deformation, and local blood perfusion. The model embodies an equation with constitutive terms that are relevant to physiological processes that govern the development of injury. The current model is a composite derived from regression of experimental data and conformation to the physiological structure. It expresses highly nonlinear coupling across the domains of thermal, mechanical, and fluid transport and is solved for composite hard and soft tissue geometry combinations. We evaluated the model for a broad range of trauma conditions defined by subject morphology, mechanical loading, temperature, and time. Moreover, we implemented the model within a finite element framework to estimate the risk of injury for specific stress conditions via large-scale simulations.

References

1.
AHRQ,
2015
, “
The Agency for Healthcare Research and Quality's (AHRQ)
,” accessed Apr. 2, 2020, https://www.ahrq.gov/topics/pressure-ulcers.html
2.
CDC,
2017
, “
Centers for Disease Control and Prevention, National Center for Injury Prevention and Control. Web-Based Injury Statistics Query and Reporting System (WISQARS)
,” accessed Apr. 2, 2020, www.cdc.gov/injury/wisqars
3.
NPUAP
,
2016
, “
NPUAP Pressure Injury Stages
,”
NPUAP 2016 Staging Consensus Conference
, Chicago, IL, Apr. 8–9, pp.
1
2
.
4.
Gefen
,
A.
,
2018
, “
The Future of Pressure Ulcer Prevention is Here: Detecting and Targeting Inflammation Early
,”
Ewma J.
,
19
(
2
), pp.
7
13
.
5.
Coleman
,
S.
,
Nixon
,
J.
,
Keen
,
J.
,
Wilson
,
L.
,
Mcginnis
,
E.
,
Dealey
,
C.
,
Stubbs
,
N.
,
Farrin
,
A.
,
Dowding
,
D.
,
Schols
,
J. M. G. A.
,
Cuddigan
,
J.
,
Berlowitz
,
D.
,
Jude
,
E.
,
Vowden
,
P.
,
Schoonhoven
,
L.
,
Bader
,
D. L.
,
Gefen
,
A.
,
Oomens
,
C. W. J.
, and
Nelson
,
E. A.
,
2014
, “
A New Pressure Ulcer Conceptual Framework
,”
J. Adv. Nurs.
,
70
(
10
), pp.
2222
2234
.10.1111/jan.12405
6.
Moritz
,
A. R.
, and
Henriques
,
F. C.
,
1947
, “
Studies of Thermal Injury II. The Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns
,”
Am. J. Pathol.
,
23
(
5
), pp.
695
720
.
7.
Moritz
,
A. R.
,
1947
, “
Studies of Thermal Injury III. The Pathology and Pathogenesis of Cutaneous Burns an Experimental Study
,”
Am. J. Pathol.
,
23
(
6
), pp.
915
941
.
8.
Iaizzo
,
P. A.
,
Kveen
,
G. L.
,
Kokate
,
J. Y.
,
Leland
,
K. J.
,
Hansen
,
G. L.
, and
Sparrow
,
E. M.
,
1995
, “
Prevention of Pressure Ulcers by Focal Cooling: Histological Assessment in a Porcine Model
,”
Wounds A Compend. Clin. Res. Pract.
,
7
(
5
), pp.
161
169
.
9.
Kokate
,
J. Y.
,
Leland
,
K. J.
,
Sparrow
,
E. M.
, and
Iaizzo
,
P. A.
,
1997
, “
Critical Thresholds for Pressure Ulcer Formation in a Porcine Model
,”
Wounds
,
9
(
4
), pp.
111
121
.
10.
Hansen
,
G. L.
,
Sparrow
,
E. M.
,
Kokate
,
J. Y.
,
Leland
,
K. J.
, and
Iaizzo
,
P. A.
,
1997
, “
Wound Status Evaluation Using Color Image Processing
,”
IEEE Trans. Med. Imaging
,
16
(
1
), pp.
78
86
.10.1109/42.552057
11.
Kokate
,
J. Y.
,
Leland
,
K. J.
,
Held
,
A. M.
,
Hansen
,
G. L.
,
Kveen
,
G. L.
,
Johnson
,
B. A.
,
Wilke
,
M. S.
,
Sparrow
,
E. M.
, and
Iaizzo
,
P. A.
,
1995
, “
Temperature-Modulated Pressure Ulcers: A Porcine Model
,”
Arch. Phys. Med. Rehabil.
,
76
(
7
), pp.
666
673
.10.1016/S0003-9993(95)80637-7
12.
Zeevi
,
T.
,
Levy
,
A.
,
Brauner
,
N.
, and
Gefen
,
A.
,
2018
, “
Effects of Ambient Conditions on the Risk of Pressure Injuries in Bedridden Patients—Multi-Physics Modelling of Microclimate
,”
Int. Wound J.
,
15
(
3
), pp.
402
416
.10.1111/iwj.12877
13.
Schwartz
,
D.
,
Magen
,
Y. K.
,
Levy
,
A.
, and
Gefen
,
A.
,
2018
, “
Effects of Humidity on Skin Friction Against Medical Textiles as Related to Prevention of Pressure Injuries
,”
Int. Wound J.
,
15
(
6
), pp.
866
874
.10.1111/iwj.12937
14.
Kottner
,
J.
,
Black
,
J.
,
Call
,
E.
,
Gefen
,
A.
, and
Santamaria
,
N.
,
2018
, “
Microclimate: A Critical Review in the Context of Pressure Ulcer Prevention
,”
Clin. Biomech.
,
59
(
November
), pp.
62
70
.10.1016/j.clinbiomech.2018.09.010
15.
European Pressure Ulcer Advisory Panel, National Pressure Injury Advisory Panel, and Pan Pacific Pressure Injury Alliance
,
2019
,
Prevention and Treatment of Pressure Ulcers/Injuries: Clinical Practice Guideline
,
The International Guideline
, Prague, CZ.
16.
Gefen
,
A.
,
Alves
,
P.
,
Ciprandi
,
G.
,
Coyer
,
F.
,
Milne
,
C. T.
,
Ousey
,
K.
,
Ohura
,
N.
,
Waters
,
N.
,
Worsley
,
P.
,
Black
,
J.
,
Barakat-Johnson
,
M.
,
Beeckman
,
D.
,
Fletcher
,
J.
,
Kirkland-Kyhn
,
H.
,
Lahmann
,
N. A.
,
Moore
,
Z.
,
Payan
,
Y.
, and
Schlüer
,
A.-B.
,
2020
, “
Device-Related Pressure Ulcers: SECURE Prevention
,”
J. Wound Care
,
29
(
Sup2a
), pp.
S1
S52
.10.12968/jowc.2020.29.Sup2a.S1
17.
Pearce
,
J. A.
,
2013
, “
Comparative Analysis of Mathematical Models of Cell Death and Thermal Damage Processes
,”
Int. J. Hyperth.
,
29
(
4
), pp.
262
280
.10.3109/02656736.2013.786140
18.
Pearce
,
J. A.
,
2015
, “
Improving Accuracy in Arrhenius Models of Cell Death: Adding a Temperature-Dependent Time Delay
,”
ASME J. Biomech. Eng.
,
137
(
12
), pp.
1
7
.
19.
Pearce
,
J. A.
,
2009
, “
Relationship Between Arrhenius Models of Thermal Damage and the CEM 43 Thermal Dose
,”
Energy-Based Treat. Tissue Assess. V
,
7181
(
February 2009
), p.
718104
.10.1117/12.807999
20.
He
,
X.
, and
Bischof
,
J. C.
,
2003
, “
Quantification of Temperature and Injury Response in Thermal Therapy and Cryosurgery
,”
Crit. Rev. Biomed. Eng.
,
31
(
5–6
), pp.
355
422
.10.1615/CritRevBiomedEng.v31.i56.10
21.
Stoll
,
A. M.
, and
Greene
,
L. C.
,
1959
, “
Relationship Between Pain and Tissue Damage Due to Thermal Radiation
,”
J. Appl. Physiol
,.,
14
(
3
), pp.
373
382
.10.1152/jappl.1959.14.3.373
22.
Henriques
,
F. C.
,
1947
, “
Studies of Thermal Injury. V. The Predictability and the Significance of Thermally Induced Rate Processes Leading to Irreversible Epidermal Injury
,”
Arch. Pathol.
,
43
(
5
), pp.
489
502
.
23.
Moritz
,
A. R.
,
Henriques
,
F. C.
,
Durtra
,
F. R.
, and
Weisiger
,
J. R.
,
1947
, “
Studies of Thermal Injury IV. An Exploration of the Casualty-Producing Attributes of Conflagrations; Local and Systemic Effects of General Cutaneous Exposure to Excessive Circumambient (Air) and Circumradiant Heat of Varying Duration and Intensity
,”
Arch. Pathol.
,
43
(
5
), pp.
466
488
.
24.
Henriques
,
F. C.
, and
Moritz
,
A. R.
,
1947
, “
Studies of Thermal Injury. I. The Conduction of Heat to and Through Skin and the Temperatures Attained Therein. A Theoretical and an Experimental Investigation
,”
Am. J. Pathol.
,
23
(
4
), pp.
530
549
.
25.
O'Neill
,
D. P.
,
Peng
,
T.
,
Stiegler
,
P.
,
Mayrhauser
,
U.
,
Koestenbauer
,
S.
,
Tscheliessnigg
,
K.
, and
Payne
,
S. J.
,
2011
, “
A Three-State Mathematical Model of Hyperthermic Cell Death
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
570
579
.10.1007/s10439-010-0177-1
26.
Feng
,
Y.
,
Oden
,
J. T.
, and
Rylander
,
M. N.
,
2008
, “
A Two-State Cell Damage Model Under Hyperthermic Conditions: Theory and In Vitro Experiments
,”
ASME J. Biomech. Eng.
,
130
(
4
), pp.
1
10
.
27.
Xue
,
C.
,
Friedman
,
A.
, and
Sen
,
C. K.
,
2009
, “
A Mathematical Model of Ischemic Cutaneous Wounds
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
39
), pp.
16782
16787
.10.1073/pnas.0909115106
28.
Linder-Ganz
,
E.
, and
Gefen
,
A.
,
2009
, “
Stress Analyses Coupled With Damage Laws to Determine Biomechanical Risk Factors for Deep Tissue Injury During Sitting
,”
ASME J. Biomech. Eng.
,
131
(
1
), pp.
1
13
.
29.
Friedman
,
R.
,
Shabshin
,
N.
,
Payan
,
Y.
, and
Gefen
,
A.
,
2019
, “
Heel Ulcers: Investigating Injurious Tissue Load Thresholds in Humans, Based on a Patient-Specific Computational Heel Model
,”
Innovations and Emerging Technologies in Wound Care
,
A.
Geren
, ed.,
Academic Press
,
New York
, pp.
123
139
.
30.
Chen
,
S. S.
,
Wright
,
N. T.
, and
Humphrey
,
J. D.
,
1997
, “
Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage
,”
ASME J. Biomech. Eng.
,
119
(
4
), pp.
372
378
.10.1115/1.2798281
31.
Wright
,
N. T.
,
Chen
,
S. S.
, and
Humphrey
,
J. D.
,
1998
, “
Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins
,”
ASME J. Biomech. Eng.
,
120
(
1
), pp.
22
26
.10.1115/1.2834301
32.
Cox
,
D. R.
,
1972
, “
Regression Models and Life-Tables
,”
J. R. Stat. Soc. Ser. B (Methodological)
,
34
(
2
), pp.
187
220
.10.1111/j.2517-6161.1972.tb00899.x
33.
Rylander
,
M. N.
,
Feng
,
Y.
,
Zimmermann
,
K.
, and
Diller
,
K. R.
,
2010
, “
Measurement and Mathematical Modeling of Thermally Induced Injury and Heat Shock Protein Expression Kinetics in Normal and Cancerous Prostate Cells
,”
Int. J. Hyperth.
,
26
(
8
), pp.
748
764
.10.3109/02656736.2010.486778
34.
Rylander
,
M. N.
,
Diller
,
K. R.
,
Wang
,
S.
, and
Aggarwal
,
S. J.
,
2005
, “
Correlation of HSP70 Expression and Cell Viability Following Thermal Stimulation of Bovine Aortic Endothelial Cells
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
751
757
.10.1115/1.1993661
35.
Wang
,
S.
,
Xie
,
W.
,
Rylander
,
M. N.
,
Tucker
,
P.
,
Aggarwal
,
S. J.
, and
Diller
,
K. R.
,
2008
, “
HSP70 Kinetics Study by Continuous Observation of HSP–GFP Fusion Protein Expression on a Perfusion Heating Stage
,”
Biotechnol. Bioeng.
,
99
(
1
), pp.
146
154
.10.1002/bit.21512
36.
Schwartz
,
D.
, and
Gefen
,
A.
,
2020
, “
An Integrated Experimental-Computational Study of the Microclimate Under Dressings Applied to Intact Weight-Bearing Skin
,”
Int. Wound J.
,
16
(
1
), pp.
1
16
.
37.
Linder-Ganz
,
E.
, and
Gefen
,
A.
,
2004
, “
Mechanical Compression-Induced Pressure Sores in Rat Hindlimb: Muscle Stiffness, Histology, and Computational Models
,”
J. Appl. Physiol.
,
96
(
6
), pp.
2034
2049
.10.1152/japplphysiol.00888.2003
38.
Loerakker
,
S.
,
Manders
,
E.
,
Strijkers
,
G. J.
,
Nicolay
,
K.
,
Baaijens
,
F. P. T.
,
Bader
,
D. L.
, and
Oomens
,
C. W. J.
,
2011
, “
The Effects of Deformation, Ischemia, and Reperfusion on the Development of Muscle Damage During Prolonged Loading
,”
J. Appl. Physiol.
,
111
(
4
), pp.
1168
1177
.10.1152/japplphysiol.00389.2011
You do not currently have access to this content.