Abstract

This paper explores the fluid flow and heat transfer behaviors of supercritical carbon dioxide (SCO2) in a tube. The application is utilization of waste heat from a marine gas turbine. The effects of ocean rolling motion on the thermofluid characteristics of SCO2 in a circular tube are numerically investigated based on a verified turbulence model. It is found that the time-averaged heat transfer capacity over a rolling period is improved over static conditions by 7.9%. However, the onset of heat transfer recovery is postponed, and the range of heat transfer deterioration is extended. Under the action of inertial forces due to the rolling motion, heat exchange between cooler/denser and warmer/lighter fluids is enhanced. Secondary circulation is formed when t/tc = 0.325, and the section-averaged heat transfer coefficient is improved by a maximum of 71%. For various periods, a parabolic can be distinctly found in terms of the variation trend of time-averaged heat transfer coefficient, which behaves differently from conventional fluids. Regarding the instantaneous thermal performance, a polarization phenomenon can be observed under severe rolling. With the rise of the layout height, the time-averaged heat transfer performance of the tube increases monotonously, and the maximum increment is 10.64% in studied range.

References

1.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S. J.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
.10.1016/j.net.2015.06.009
2.
Luu
,
M. T.
,
Milani
,
D.
,
McNaughton
,
R.
, and
Abbas
,
A.
,
2017
, “
Analysis for Flexible Operation of Supercritical CO2 Brayton Cycle Integrated With Solar Thermal Systems
,”
Energy
,
124
(
1
), pp.
752
771
.10.1016/j.energy.2017.02.040
3.
Moullec
,
Y. L.
,
2013
, “
Conceptual Study of a High Efficiency Coal-Fired Power Plant With CO2 Capture Using a Supercritical CO2 Brayton Cycle
,”
Energy
,
49
(
1
), pp.
32
46
.10.1016/j.energy.2012.10.022
4.
Yang
,
C. Y.
, and
Liao
,
K. C.
,
2017
, “
Effect of Experimental Method on the Heat Transfer Performance of Supercritical Carbon Dioxide in Microchannel
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
11
), p.
112404
.10.1115/1.4036694
5.
Hou
,
S. Y.
,
Wu
,
Y. D.
,
Zhou
,
Y. D.
, and
Yu
,
L. J.
,
2017
, “
Performance Analysis of the Combined Supercritical CO2 Recompression and Regenerative Cycle Used in Waste Heat Recovery of Marine Gas Turbine
,”
Energy Convers. Manage.
,
151
(
1
), pp.
73
85
.10.1016/j.enconman.2017.08.082
6.
Sadhu
,
S.
,
Ramgopal
,
M.
, and
Bhattacharyya
,
S.
,
2018
, “
Steady-State Analysis of a High-Temperature Natural Circulation Loop Based on Water-Cooled Supercritical CO2
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
6
), p.
062502
.10.1115/1.4038541
7.
Wang
,
J. Y.
,
Guan
,
Z. Q.
,
Gurgenci
,
H.
,
Hooman
,
K.
,
Veeraragavan
,
A.
, and
Kang
,
X.
,
2018
, “
Computational Investigations of Heat Transfer to Supercritical CO2 in a Large Horizontal Tube
,”
Energy Convers. Manage.
,
157
(
1
), pp.
536
548
.10.1016/j.enconman.2017.12.046
8.
Kim
,
J. K.
,
Jeon
,
H. K.
, and
Lee
,
J. S.
,
2007
, “
Wall Temperature Measurements With Turbulent Flow in Heated Vertical Circular/Non-Circular Channels of Supercritical Pressure Carbon-Dioxide
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4908
4911
.10.1016/j.ijheatmasstransfer.2007.06.026
9.
Song
,
J. H.
,
Kim
,
H. Y.
,
Kim
,
H.
, and
Bae
,
Y. Y.
,
2008
, “
Heat Transfer Characteristics of a Supercritical Fluid Flow in a Vertical Pipe
,”
J. Supercrit. Fluids
,
44
(
2
), pp.
164
171
.10.1016/j.supflu.2007.11.013
10.
Jiang
,
P. X.
,
Zhang
,
Y.
,
Xu
,
Y. J.
, and
Shi
,
R. F.
,
2008
, “
Experimental and Numerical Investigation of Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Tube at Low Reynolds Numbers
,”
Int. J. Therm. Sci.
,
47
(
8
), pp.
998
1011
.10.1016/j.ijthermalsci.2007.08.003
11.
Jiang
,
P. X.
,
Zhang
,
Y.
, and
Shi
,
R. F.
,
2008
, “
Experimental and Numerical Investigation of Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Mini-Tube
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
3052
3056
.10.1016/j.ijheatmasstransfer.2007.09.008
12.
Bruch
,
A.
,
Bontemps
,
A.
, and
Colasson
,
S.
,
2009
, “
Experimental Investigation of Heat Transfer of Supercritical Carbon Dioxide Flowing in a Cooled Vertical Tube
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2589
2598
.10.1016/j.ijheatmasstransfer.2008.12.021
13.
Bae
,
Y. Y.
,
Kim
,
H. Y.
, and
Kang
,
D. J.
,
2010
, “
Forced and Mixed Convection Heat Transfer to Supercritical CO2 Vertically Flowing in a Uniformly-Heated Circular Tube
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1295
1308
.10.1016/j.expthermflusci.2010.06.001
14.
Li
,
Z. H.
,
Jiang
,
P. X.
,
Zhao
,
C. R.
, and
Zhang
,
Y.
,
2010
, “
Experimental Investigation of Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Circular Tube
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1162
1171
.10.1016/j.expthermflusci.2010.04.005
15.
Kim
,
D. E.
, and
Kim
,
M. H.
,
2010
, “
Experimental Study of the Effects of Flow Acceleration and Buoyancy on Heat Transfer in a Supercritical Fluid Flow in a Circular Tube
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3336
3349
.10.1016/j.nucengdes.2010.07.002
16.
Gupta
,
S.
,
Saltanov
,
E.
,
Mokry
,
S. J.
,
Pioro
,
I.
,
Trevani
,
L.
, and
McGillivray
,
D.
,
2013
, “
Developing Empirical Heat-Transfer Correlations for Supercritical CO2 Flowing in Vertical Bare Tubes
,”
Nucl. Eng. Des.
,
261
, pp.
116
131
.10.1016/j.nucengdes.2013.02.048
17.
Jiang
,
P. X.
,
Liu
,
B.
,
Zhao
,
C. R.
, and
Luo
,
F.
,
2013
, “
Convection Heat Transfer of Supercritical Pressure Carbon Dioxide in a Vertical Micro Tube From Transition to Turbulent Flow Regime
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
741
749
.10.1016/j.ijheatmasstransfer.2012.08.038
18.
Zahlan
,
H.
,
Groeneveld
,
D.
, and
Tavoularis
,
S.
,
2015
, “
Measurements of Convective Heat Transfer to Vertical Upward Flows of CO2 in Circular Tubes at Near-Critical and Supercritical Pressures
,”
Nucl. Eng. Des.
,
289
, pp.
92
107
.10.1016/j.nucengdes.2015.04.013
19.
Ma
,
T.
,
Chu
,
W. X.
,
Xu
,
X. Y.
,
Chen
,
Y. T.
, and
Wang
,
Q. W.
,
2016
, “
An Experimental Study on Heat Transfer Between Supercritical Carbon Dioxide and Water Near the Pseudo-Critical Temperature in a Double Pipe Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
93
, pp.
379
387
.10.1016/j.ijheatmasstransfer.2015.10.017
20.
Eter
,
A.
,
Groeneveld
,
D.
, and
Tavoularis
,
S.
,
2017
, “
Convective Heat Transfer in Supercritical Flows of CO2 in Tubes With and Without Flow Obstacles
,”
Nucl. Eng. Des.
,
313
, pp.
162
176
.10.1016/j.nucengdes.2016.12.016
21.
Liu
,
S. H.
,
Huang
,
Y. P.
,
Liu
,
G. X.
,
Wang
,
J. F.
, and
Leung
,
L. K. H.
,
2017
, “
Improvement of Buoyancy and Acceleration Parameters for Forced and Mixed Convective Heat Transfer to Supercritical Fluids Flowing in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
106
, pp.
1144
1156
.10.1016/j.ijheatmasstransfer.2016.10.093
22.
Kline
,
N.
,
Feuerstein
,
F.
, and
Tavoularis
,
S.
,
2018
, “
Onset of Heat Transfer Deterioration in Vertical Pipe Flows of CO2 at Supercritical Pressures
,”
Int. J. Heat Mass Transfer
,
118
, pp.
1056
1068
.10.1016/j.ijheatmasstransfer.2017.11.039
23.
Zhao
,
C. R.
,
Liu
,
Q. F.
,
Zhang
,
Z.
,
Jiang
,
P. X.
, and
Bo
,
H. L.
,
2018
, “
Investigation of Buoyancy-Enhanced Heat Transfer of Supercritical CO2 in Upward and Downward Tube Flows
,”
J. Supercrit. Fluids
,
138
, pp.
154
166
.10.1016/j.supflu.2018.03.014
24.
Zhang
,
Q.
,
Li
,
H. X.
,
Kong
,
X. F.
,
Liu
,
J. L.
, and
Lei
,
X. L.
,
2018
, “
Special Heat Transfer Characteristics of Supercritical CO2 Flowing in a Vertically-Upward Tube With Low Mass Flux
,”
Int. J. Heat Mass Transfer
,
122
, pp.
469
482
.10.1016/j.ijheatmasstransfer.2018.01.112
25.
Zhang
,
S. J.
,
Xu
,
X. X.
,
Liu
,
C.
,
Liu
,
X. X.
, and
Dang
,
C. B.
,
2019
, “
Experimental Investigation on the Heat Transfer Characteristics of Supercritical CO2 at Various Mass Flow Rates in Heated Vertical-Flow Tube
,”
Appl. Therm. Eng.
,
157
(
5
), p.
113687
.10.1016/j.applthermaleng.2019.04.097
26.
Zhang
,
W.
,
Wang
,
S. X.
,
Li
,
C. D.
, and
Xu
,
J. L.
,
2015
, “
Mixed Convective Heat Transfer of CO2 at Supercritical Pressures Flowing Upward Through a Vertical Helically Coiled Tube
,”
Appl. Therm. Eng.
,
88
(
5
), pp.
61
70
.10.1016/j.applthermaleng.2014.10.031
27.
Wang
,
S. X.
,
Zhang
,
W.
, and
Xu
,
J. L.
,
2013
, “
Experimental Investigation on Flow Characteristics of Supercritical CO2 in a Helically Coiled Tube
,”
Appl. Mech. Mater.
,
368–370
, pp.
631
635
.10.4028/www.scientific.net/AMM.368-370.631
28.
Xu
,
J. L.
,
Yang
,
C. Y.
,
Zhang
,
W.
, and
Sun
,
D. L.
,
2015
, “
Turbulent Convective Heat Transfer of CO2 in a Helical Tube at Near-Critical Pressure
,”
Int. J. Heat Mass Transfer
,
80
, pp.
748
758
.10.1016/j.ijheatmasstransfer.2014.09.066
29.
Tan
,
S. C.
,
Su
,
G. H.
, and
Gao
,
P. Z.
,
2009
, “
Heat Transfer Model of Single-Phase Natural Circulation Flow Under a Rolling Motion
,”
Nucl. Eng. Des.
,
239
(
10
), pp.
2212
2216
.10.1016/j.nucengdes.2009.05.002
30.
Tan
,
S. C.
,
Su
,
G. H.
, and
Gao
,
P. Z.
,
2009
, “
Experimental and Theoretical Study on Single-Phase Natural Circulation Flow and Heat Transfer Under Rolling Motion Condition
,”
Appl. Therm. Eng.
,
29
(
14–15
), pp.
3160
3168
.10.1016/j.applthermaleng.2009.04.019
31.
Tan
,
S. C.
,
Wang
,
Z. W.
,
Wang
,
C.
, and
Lan
,
S.
,
2013
, “
Flow Fluctuations and Flow Friction Characteristics of Vertical Narrow Rectangular Channel Under Rolling Motion Conditions
,”
Exp. Therm. Fluid Sci.
,
50
, pp.
69
78
.10.1016/j.expthermflusci.2013.05.006
32.
Yu
,
Z. T.
,
Lan
,
S.
,
Yuan
,
H. S.
, and
Tan
,
S. C.
,
2015
, “
Temperature Fluctuation Characteristics in a Mini-Rectangular Channel Under Rolling Motion
,”
Prog. Nucl. Energy
,
81
, pp.
203
216
.10.1016/j.pnucene.2015.01.017
33.
Xing
,
D. C.
,
Yan
,
C. Q.
, and
Sun
,
L. C.
,
2014
, “
Flow Fluctuation Behaviors of Single-Phase Forced Circulation Under Rolling Conditions
,”
Ocean. Eng.
,
82
(
15
), pp.
115
122
.10.1016/j.oceaneng.2014.03.006
34.
Pendyala
,
R.
,
Jayanti
,
S.
, and
Balakrishnan
,
A. R.
,
2008
, “
Flow and Pressure Drop Fluctuations in a Vertical Tube Subject to Low Frequency Oscillations
,”
Nucl. Eng. Des.
,
238
(
1
), pp.
178
187
.10.1016/j.nucengdes.2007.06.010
35.
Pendyala
,
R.
,
Jayanti
,
S.
, and
Balakrishnan
,
A. R.
,
2008
, “
Convective Heat Transfer in Single-Phase Flow in a Vertical Tube Subjected to Axial Low Frequency Oscillations
,”
Heat Mass Transfer
,
44
(
7
), pp.
857
864
.10.1007/s00231-007-0302-3
36.
Gu
,
Y.
, and
Ju
,
Y. L.
,
2012
, “
Investigation on the Periodically Oscillating Pressure Characteristics of the Flow in the Rolling Pipe
,”
Ocean. Eng.
,
55
(
1
), pp.
1
9
.10.1016/j.oceaneng.2012.06.035
37.
Wang
,
C.
,
Gao
,
P. Z.
,
Wang
,
S. W.
,
Li
,
X. H.
, and
Fang
,
C. Y.
,
2013
, “
Experimental Study of Single-Phase Forced Circulation Heat Transfer in Circular Pipe Under Rolling Motion
,”
Nucl. Eng. Des.
,
265
, pp.
348
355
.10.1016/j.nucengdes.2013.08.066
38.
Jin
,
G. Y.
,
Yan
,
C. Q.
,
Sun
,
L. C.
, and
Xing
,
D. C.
,
2014
, “
Effect of Rolling Motion on Transient Flow Resistance of Two-Phase Flow in a Narrow Rectangular Duct
,”
Ann. Nucl. Energy
,
64
, pp.
135
143
.10.1016/j.anucene.2013.09.035
39.
Chen
,
C.
,
Gao
,
P. Z.
,
Tan
,
S. C.
,
Huang
,
D.
, and
Yu
,
Z. T.
,
2015
, “
Effect of Rolling Motion on Two-Phase Frictional Pressure Drop of Boiling Flows in a Rectangular Narrow Channel
,”
Ann. Nucl. Energy
,
83
, pp.
125
136
.10.1016/j.anucene.2015.03.049
40.
Chen
,
C.
,
Gao
,
P. Z.
,
Tan
,
S. C.
, and
Huang
,
D.
,
2015
, “
Effects of Rolling Motion on Thermal-Hydraulic Characteristics of Boiling Flow in Rectangular Narrow Channel
,”
Ann. Nucl. Energy
,
76
, pp.
504
513
.10.1016/j.anucene.2014.10.024
41.
Li
,
S. L.
,
Cai
,
W. H.
,
Jiang
,
Y. Q.
,
Zhang
,
H. C.
, and
Li
,
F. Z.
,
2019
, “
The Pressure Drop and Heat Transfer Characteristics of Condensation Flow With Hydrocarbon Mixtures in a Spiral Pipe Under Static and Heaving Conditions
,”
Int. J. Refrig.
,
103
, pp.
16
31
.10.1016/j.ijrefrig.2019.03.027
42.
Li
,
S. L.
,
Jiang
,
Y. Q.
,
Cai
,
W. H.
,
Zhang
,
H. C.
, and
Li
,
F. Z.
,
2019
, “
Numerical Study on Condensation Heat Transfer and Pressure Drop Characteristics of Methane Upward Flow in a Spiral Pipe Under Sloshing Condition
,”
Int. J. Heat Mass Transfer
,
129
, pp.
310
325
.10.1016/j.ijheatmasstransfer.2018.09.108
43.
Saeed
,
M.
, and
Kim
,
M. H.
,
2019
, “
Thermal-Hydraulic Analysis of Sinusoidal Fin-Based Printed Circuit Heat Exchangers for Supercritical CO2 Brayton Cycle
,”
Energy Convers. Manage.
,
193
(
1
), pp.
124
139
.10.1016/j.enconman.2019.04.058
44.
Kim
,
D. E.
, and
Kim
,
M. H.
,
2011
, “
Experimental Investigation of Heat Transfer in Vertical Upward and Downward Supercritical CO2 Flow in a Circular Tube
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
176
191
.10.1016/j.ijheatfluidflow.2010.09.001
45.
Fluent 15.0.
,
2013
,
ANSYS FLUENT Solver Theory Guide
,
ANSYS
,
Canonsburg
.
46.
He
,
S.
,
Jiang
,
P. X.
,
Xu
,
Y. J.
,
Shi
,
R. F.
,
Kim
,
W. S.
, and
Jackson
,
J. D.
,
2005
, “
A Computational Study of Convection Heat Transfer to CO2 at Supercritical Pressures in a Vertical Mini Tube
,”
Int. J. Therm. Sci.
,
44
(
6
), pp.
521
530
.10.1016/j.ijthermalsci.2004.11.003
47.
Wang
,
J. Y.
,
Li
,
J. S.
,
Gurgenci
,
H.
,
Veeraragavan
,
A.
,
Kang
,
X.
, and
Hooman
,
K.
,
2019
, “
Computational Investigations on Convective Flow and Heat Transfer of Turbulent Supercritical CO2 Cooled in Large Inclined Tubes
,”
Appl. Therm. Eng.
,
159
, p.
113922
.10.1016/j.applthermaleng.2019.113922
48.
Li
,
Z. H.
,
Wu
,
Y. X.
,
Lu
,
J. F.
,
Zhang
,
D. L.
, and
Zhang
,
H.
,
2014
, “
Heat Transfer to Supercritical Water in Circular Tubes With Circumferentially Non-Uniform Heating
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
190
200
.10.1016/j.applthermaleng.2014.05.013
49.
Liu
,
L.
,
Xiao
,
Z. J.
,
Yan
,
X.
,
Zeng
,
X. Y.
, and
Huang
,
Y. P.
,
2013
, “
Heat Transfer Deterioration to Supercritical Water in Circular Tube and Annular Channel
,”
Nucl. Eng. Des.
,
255
, pp.
97
104
.10.1016/j.nucengdes.2012.09.025
50.
Li
,
X.
,
Sun
,
F.
,
Xie
,
G. N.
, and
Boetcher
,
S. K. S.
,
2020
, “
Supercritical CO2 Flowing Upward in a Vertical Tube Subject to Axially Non-Uniform Heating
,”
Numer. Heat Transf. Part A Appl.
,
78
(
12
), pp.
717
736
.10.1080/10407782.2020.1805224
51.
Chen
,
C.
,
Gao
,
P. Z.
,
Tan
,
S. C.
, and
Yu
,
Z. T.
,
2016
, “
Boiling Heat Transfer Characteristics of Pulsating Flow in Rectangular Channel Under Rolling Motion
,”
Exp. Therm. Fluid Sci.
,
70
, pp.
246
254
.10.1016/j.expthermflusci.2015.09.013
52.
Zhao
,
Z.
,
Lin
,
Y.
,
Yao
,
S.
,
Zhang
,
K.
,
Wang
,
W.
,
Liu
,
Z.
, and
Xiao
,
Q.
,
2017
, “
Numerical Investigation on Heat Transfer to Supercritical CO2 in Rolling Motion
,”
Ann. Nucl. Energy
,
106
, pp.
97
110
.10.1016/j.anucene.2017.03.047
53.
Forooghi
,
P.
, and
Hooman
,
K.
,
2013
, “
Numerical Study of Turbulent Convection in Inclined Pipes With Significant Buoyancy Influence
,”
Int. J. Heat Mass Transfer
,
61
, pp.
310
322
.10.1016/j.ijheatmasstransfer.2013.02.014
54.
Yang
,
C. Y.
,
Xu
,
J. L.
,
Wang
,
X. D.
, and
Zhang
,
W.
,
2013
, “
Mixed Convective Flow and Heat Transfer of Supercritical CO2 in Circular Tubes at Various Inclination Angles
,”
Int. J. Heat Mass Transfer
,
64
, pp.
212
223
.10.1016/j.ijheatmasstransfer.2013.04.033
55.
Fan
,
Y. H.
,
Tang
,
G. H.
,
Li
,
X. L.
,
Yang
,
D. L.
, and
Wang
,
S. Q.
,
2019
, “
Correlation Evaluation on Circumferentially Average Heat Transfer for Supercritical Carbon Dioxide in Non-Uniform Heating Vertical Tubes
,”
Energy
,
170
(
1
), pp.
480
496
.10.1016/j.energy.2018.12.151
You do not currently have access to this content.