Abstract

The most common nongranular fillers are sheet and fiber. When they are distributed along the heat flux direction, the thermal conductivity of the composite increases greatly. Meanwhile, the filler contact also has a large effect on the thermal conductivity. However, the effect of filler contacts on the thermal conductivity of the composite with directional fillers has not been investigated. In this paper, combined effects of the filler contact, content, and orientation are investigated. The results show that the effect of filler orientations on the thermal conductivity is greater than filler contacts in the low filler content, and the exact opposite in the high filler content. The effect of filler contacts on fibrous and sheet fillers is far greater than cube and sphere fillers. This rule is affected by the filler contact. The filler content of 8% is the ideal percolation threshold of composites with fibrous and sheet fillers. It is lower than cube filler and previous reports. The space for the thermal conductivity growth of composites with directional fillers is still very large. The effect of the interfacial thermal resistance should be considered in predicting the thermal conductivity of the composite under high interfacial thermal resistances (>10−4).

References

1.
Chen
,
H. Y.
,
Ginzburg
,
V. V.
,
Yang
,
J.
,
Yang
,
Y. F.
,
Liu
,
W.
,
Huang
,
Y.
,
Du
,
L. B.
, and
Chen
,
B.
,
2016
, “
Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications
,”
Prog. Polym. Sci.
,
59
, pp.
41
85
.10.1016/j.progpolymsci.2016.03.001
2.
Afrooz
,
I. E.
, and
Ochsner
,
A.
,
2015
, “
Effect of the Carbon Nanotube Distribution on the Thermal Conductivity of Composite Materials
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
3
), p.
034501
.10.1115/1.4029034
3.
Yang
,
S. Y.
,
Huang
,
Y. F.
,
Lei
,
J.
,
Zhu
,
L.
, and
Li
,
Z. M.
,
2018
, “
Enhanced Thermal Conductivity of Polyethylene/Boron Nitride Multilayer Sheets Through Annealing
,”
Compos. Part. A
,
107
, pp.
135
143
.10.1016/j.compositesa.2017.12.031
4.
Fang
,
H. M.
,
Zhang
,
X.
,
Zhao
,
Y. H.
, and
Bai
,
S. L.
,
2017
, “
Dense Grapheme Foam and Hexagonal Boron Nitride Filled PDMS Composites With High Thermal Conductivity and Breakdown Strength
,”
Compos. Sci. Technol.
,
152
, pp.
243
253
.10.1016/j.compscitech.2017.09.032
5.
Zhang
,
H.
, and
Jaganandham
,
K.
,
2014
, “
Thermal Conductivity and Interface Thermal Conductance in Composites of Titanium With Graphene Platelets
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
6
), p.
061301
.10.1115/1.4026488
6.
Juan
,
C.
,
Avram
,
B. C.
, and
Deisenroth
,
D. C.
,
2016
, “
Thermal Performance of a Polymer Composite Webbed-Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
98
, pp.
845
856
.10.1016/j.ijheatmasstransfer.2016.03.075
7.
Xu
,
X. F.
,
Chen
,
J.
,
Zhou
,
J.
, and
Li
,
B. W.
,
2018
, “
Thermal Conductivity of Polymers and Their Nanocomposites
,”
Adv. Mater.
,
30
(
17
), p.
1705544
.10.1002/adma.201705544
8.
Gu
,
J. W.
,
Yang
,
X. T.
,
Lv
,
Z. Y.
,
Li
,
N.
,
Liang
,
C. B.
, and
Zhang
,
Q. Y.
,
2016
, “
Functionalized Graphite Nanoplates/Epoxy Resin Nanocomposites With High Thermal Conductivity
,”
Int. J. Heat Mass Transfer
,
92
, pp.
15
22
.10.1016/j.ijheatmasstransfer.2015.08.081
9.
Park
,
W. C.
,
Choi
,
K. W.
,
Lafdi
,
K.
, and
Yu
,
C. G.
,
2012
, “
Influence of Nanomaterials in Polymer Composites on Thermal Conductivity
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
4
), p.
041302
.10.1115/1.4005201
10.
Zhang
,
H.
,
Fang
,
W.-Z.
,
Wang
,
X.
,
Li
,
Y.-M.
, and
Tao
,
W.-Q.
,
2017
, “
Thermal Conductivity of Fiber and Opacifier Loaded Silica Aerogel Composite
,”
Int. J. Heat Mass Transfer
,
115
, pp.
21
31
.10.1016/j.ijheatmasstransfer.2017.08.006
11.
Kapadia
,
R. S.
,
Louie
,
B. M.
, and
Bandaru
,
P. R.
,
2014
, “
The Influence of Carbon Nanotube Aspect Ratio on Thermal Conductivity Enhancement in Nanotube-Polymer Composites
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
1
), p.
011303
.10.1115/1.4025047
12.
Du
,
H. X.
,
Qi
,
Y.
,
Yu
,
W.
,
Yin
,
J. S.
, and
Xie
,
H. Q.
,
2017
, “
T-Shape ZnO Whisker: A More Effective Conductive Filler Than Spherical Particles for the Thermal Grease
,”
Int. J. Heat Mass Transfer
,
112
, pp.
1052
1056
.10.1016/j.ijheatmasstransfer.2017.05.016
13.
Chen
,
Y. P.
,
Hou
,
X.
,
Liao
,
M. Z.
,
Dai
,
W.
,
Wang
,
Z. W.
, and
Yan
,
C.
,
2020
, “
Constructing a “Pea-Pod-Like” Alumina-Graphene Binary Architecture for Enhancing Thermal Conductivity of Epoxy Composite
,”
Chem. Eng. J.
,
381
, pp.
1052
1056
.10.1016/j.cej.2019.122690
14.
Che
,
J.
,
Jing
,
M.
,
Liu
,
D.
,
Wang
,
K.
, and
Fu
,
Q.
,
2018
, “
Largely Enhanced Thermal Conductivity of HDPE/Boron Nitride/Carbon Nanotubes Ternary Composites Via Filler Network-Network Synergy and Oriemtation
,”
Compos. Part. A
,
112
, pp.
32
39
.10.1016/j.compositesa.2018.05.016
15.
Chatterjee
,
A.
,
Verma
,
R.
,
Umashankar
,
H. P.
,
Kasthurirengan
,
S.
,
Shivaprakash
,
N. C.
, and
Behera
,
U.
,
2019
, “
Heat Conduction Model Based on Percolation Theory for Thermal Conductivity of Composites With High Volume Fraction of Filler in Base Matrix
,”
Int. J. Therm. Sci.
,
136
, pp.
389
395
.10.1016/j.ijthermalsci.2018.09.015
16.
Miranda
,
J. O.
, and
Gil
,
J. J. A.
,
2012
, “
Thermal Conductivity of Nanocomposites With High Volume Fractions of Particles
,”
Compos. Sci. Technol.
,
72
, pp.
853
857
.10.1016/j.compscitech.2012.02.016
17.
Sun
,
N.
,
Sun
,
J.
,
Zeng
,
X.
,
Chen
,
P.
,
Qian
,
J.
,
Xia
,
R.
, and
Sun
,
R.
,
2018
, “
Hot-Pressing Induced Orientation of Boron Nitride in Polycarbonate Composites With Enhanced Thermal Conductivity
,”
Compos. Part. A
,
110
, pp.
45
52
.10.1016/j.compositesa.2018.04.010
18.
Sun
,
M.
,
Dai
,
B.
,
Liu
,
K.
,
Yao
,
K.
,
Zhao
,
J.
,
Lyu
,
Z.
,
Wang
,
P.
,
Ding
,
Y.
,
Yang
,
L.
,
Han
,
J.
, and
Zhu
,
J.
,
2018
, “
Enhancement in Thermal Conductivity of Polymer Composites Using Aligned Diamonds Coated With Superparamagnetic Magnetite
,”
Compos. Sci. Technol.
,
164
, pp.
129
135
.10.1016/j.compscitech.2018.05.039
19.
Hautcoeur
,
D.
,
Lorgouilloux
,
Y.
,
Leriche
,
A.
,
Gonon
,
M.
,
Nait-Ali
,
B.
,
Smith
,
D. S.
,
Lardot
,
V.
, and
Cambier
,
F.
,
2016
, “
Thermal Conductivity of Ceramic/Metal Composites From Performs Produced by Freeze Casting
,”
Ceram. Int.
,
42
(
12
), pp.
14077
14085
.10.1016/j.ceramint.2016.06.016
20.
Guo
,
H.
,
Li
,
X.
,
Wang
,
Z. Y.
,
Li
,
B. A.
,
Wang
,
J. X.
, and
Wang
,
S. C.
,
2018
, “
Thermal Conductivity of PVDF/PANI-Nanofiber Composite Membrane Aligned in an Electric Field
,”
Chin. J. Chem. Eng.
,
26
(
5
), pp.
1213
1218
.10.1016/j.cjche.2017.12.015
21.
Su
,
Z.
,
Wang
,
H.
,
Ye
,
X.
,
Tian
,
K.
,
Huang
,
W.
,
He
,
J.
,
Guo
,
Y.
, and
Tian
,
X.
,
2018
, “
Anisotropic Thermally Conductive Flexible Polymer Composites Filled With Hexagonal Born Nitride Platelets and Ammine Carbon Nanotubes: Effects of the Filler Distribution and Orientation
,”
Compos. Part. A
,
109
, pp.
402
412
.10.1016/j.compositesa.2018.03.021
22.
Wang
,
X. J.
,
Liu
,
H. H.
,
Qiu
,
X. W.
,
Wang
,
L. C.
, and
Wang
,
L. B.
,
2018
, “
Thermal Conductivity of Filled Composite Materials Considering Interactions Between Fillers
,”
Appl. Therm. Eng.
,
141
, pp.
835
843
.10.1016/j.applthermaleng.2018.06.022
23.
Xu
,
Y. B.
, and
Yagi
,
K. C.
,
2004
, “
Automatic FEM Model Generation for Evaluating Thermal Conductivity of Composite With Random Materials Arrangement
,”
Comp. Mater. Sci
,
30
(
3–4
), pp.
242
250
.10.1016/j.commatsci.2004.03.011
24.
Wang
,
X. J.
,
Liu
,
H. H.
,
Wang
,
L. C.
,
Liu
,
B. Y.
, and
Wang
,
L. B.
,
2018
, “
Optimization of Thermal Insulation Performance for the Porous Materials
,”
Heat. Transfer Eng.
,
39
(
17–18
), pp.
1573
1581
.10.1080/01457632.2017.1369847
25.
Veyret
,
A.
,
Cioulachtjian
,
S.
,
Tadrist
,
L.
, and
Pantaloni
,
J.
,
1993
, “
Effective Thermal Conductivity of a Composite Material: A Numerical Approach
,”
ASME J. Heat Transfer-Trans. ASME
,
115
(
4
), pp.
866
871
.10.1115/1.2911381
26.
Jeng
,
M. S.
,
Yang
,
R. G.
,
Song
,
D.
, and
Chen
,
G.
,
2008
, “
Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
4
), p.
042410
.10.1115/1.2818765
27.
Ganapathy
,
D.
,
Singh
,
K.
,
Phelan
,
P. E.
, and
Prasher
,
R.
,
2005
, “
An Effective Unit Cell Approach to Compute the Thermal Conductivity of Composites With Cylindrical Particles
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
6
), pp.
553
559
.10.1115/1.1915387
28.
Zhao
,
L. W.
,
Shi
,
X. G.
,
Yin
,
Y.
,
Jiang
,
B.
, and
Huang
,
Y. D.
,
2020
, “
A Self-Healing Silicone/BN Composite With Efficient Healing Property and Improved Thermal Conductivities
,”
Compos. Sci. Technol.
,
186
, p.
107919
.10.1016/j.compscitech.2019.107919
29.
Wang
,
M.
,
Jiao
,
Z.
,
Chen
,
Y.
,
Hou
,
X.
,
Fu
,
L.
,
Wu
,
Y.
,
Li
,
S.
,
Jiang
,
N.
, and
Yu
,
J.
,
2018
, “
Enhanced Thermal Conductivity of Poly(Vinylidene Fluoride)/Boron Nitride Nanosheet Composites at Low Filler Content
,”
Compos. Part. A
,
109
, pp.
321
329
.10.1016/j.compositesa.2018.03.023
You do not currently have access to this content.