Abstract

Continuum transport equations are commonly applied to nanopores in atomically thin membranes for simple modeling. Although these equations do not apply for nanopores approaching the fluid or solute molecule size, they can be reasonably accurate for larger nanopores. Relatively large graphene nanopores have applications in small particle filtration and appear as unwanted defects in large-area membranes. Solute transport rates through these nanopores determine the rejection performance of the membrane. Atomically thin membranes commonly operate in a regime where advection and diffusion both contribute appreciably to transport. Solute mass transfer rates through larger nanopores have previously been modeled by adding continuum estimates for pure diffusion and pure advection through an infinitesimally thick orifice plate, as if the separate contributions were independent. We show here that estimating the transport rate in this way is accurate to within 30%. We further derive an expression for the net mass transfer rate in advection–diffusion through an infinitesimal thickness orifice plate at low Reynolds numbers that is accurate to within 1% for positive Péclet numbers (where diffusion is in the same direction as advection) and applies for negative Péclet numbers as well. Based on our expression, we devise an equation for the net mass transfer rate in creeping flow through orifice plates of arbitrary thickness that matches finite volume calculations to within 3% for positive Péclet numbers. These simple but accurate analytical equations for mass transfer rates in creeping flow through an orifice plate are useful tools in constructing approximate transport models.

References

1.
Wang
,
L.
,
Boutilier
,
M. S. H.
,
Kidambi
,
P. R.
,
Jang
,
D.
,
Hadjiconstantinou
,
N. G.
, and
Karnik
,
R.
,
2017
, “
Fundamental Transport Mechanisms, Fabrication and Potential Applications of Nanoporous Atomically Thin Membranes
,”
Nat. Nanotechnol.
,
12
(
6
), pp.
509
522
.10.1038/nnano.2017.72
2.
Derby
,
M. M.
,
Adams
,
A. N.
,
Chakraborty
,
P. P.
,
Haque
,
M. R.
,
Huber
,
R. A.
,
Morrow
,
J. A.
,
Riley
,
G. A.
, et al.,
2020
, “
Heat and Mass Transfer in the Food, Energy, and Water Nexus—A Review
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
9
), p.
090801
.10.1115/1.4047089
3.
Koenig
,
S. P.
,
Wang
,
L.
,
Pellegrino
,
J.
, and
Bunch
,
J. S.
,
2012
, “
Selective Molecular Sieving Through Porous Graphene
,”
Nat. Nanotechnol.
,
7
(
11
), pp.
728
732
.10.1038/nnano.2012.162
4.
Jain
,
T.
,
Rasera
,
B. C.
,
Guerrero
,
R. J. S.
,
Boutilier
,
M. S. H.
,
O'Hern
,
S. C.
,
Idrobo
,
J.-C.
, and
Karnik
,
R.
,
2015
, “
Heterogeneous Sub-Continuum Ionic Transport in Statistically Isolated Graphene Nanopores
,”
Nat. Nanotechnol.
,
10
(
12
), pp.
1053
1057
.10.1038/nnano.2015.222
5.
Rollings
,
R. C.
,
Kuan
,
A. T.
, and
Golovchenko
,
J. A.
,
2016
, “
Ion Selectivity of Graphene Nanopores
,”
Nat. Commun.
,
7
(
1
), p.
11408
.10.1038/ncomms11408
6.
Cantley
,
L.
,
Swett
,
J. L.
,
Lloyd
,
D.
,
Cullen
,
D. A.
,
Zhou
,
K.
,
Bedworth
,
P. V.
,
Heise
,
S.
, et al.,
2019
, “
Voltage Gated Inter-Cation Selective Ion Channels From Graphene Nanopores
,”
Nanoscale
,
11
(
20
), pp.
9856
9861
.10.1039/C8NR10360G
7.
O'Hern
,
S. C.
,
Jang
,
D.
,
Bose
,
S.
,
Idrobo
,
J.-C.
,
Song
,
Y.
,
Laoui
,
T.
,
Kong
,
J.
, and
Karnik
,
R.
,
2015
, “
Nanofiltration Across Defect-Sealed Nanoporous Monolayer Graphene
,”
Nano Lett.
,
15
(
5
), pp.
3254
3260
.10.1021/acs.nanolett.5b00456
8.
Cheng
,
P.
,
Kelly
,
M. M.
,
Moehring
,
N. K.
,
Ko
,
W.
,
Li
,
A.-P.
,
Idrobo
,
J. C.
,
Boutilier
,
M. S. H.
, and
Kidambi
,
P. R.
,
2020
, “
Facile Size-Selective Defect Sealing in Large-Area Atomically Thin Graphene Membranes for Sub-Nanometer Scale Separations
,”
Nano Lett.
,
20
(
8
), pp.
5951
5959
.10.1021/acs.nanolett.0c01934
9.
Suk
,
M. E.
, and
Aluru
,
N. R.
,
2013
, “
Molecular and Continuum Hydrodynamics in Graphene Nanopores
,”
RSC Adv.
,
3
(
24
), pp.
9365
9372
.10.1039/c3ra40661j
10.
Cohen-Tanugi
,
D.
, and
Grossman
,
J. C.
,
2012
, “
Water Desalination Across Nanoporous Graphene
,”
Nano Lett.
,
12
(
7
), pp.
3602
3608
.10.1021/nl3012853
11.
Gai
,
J.-G.
, and
Gong
,
X.-L.
,
2014
, “
Zero Internal Concentration Polarization FO Membrane: Functionalized Graphene
,”
J. Mater. Chem. A
,
2
(
2
), pp.
425
429
.10.1039/C3TA13562D
12.
Gai
,
J.-G.
,
Gong
,
X.-L.
,
Wang
,
W.-W.
,
Zhang
,
X.
, and
Kang
,
W.-L.
,
2014
, “
An Ultrafast Water Transport Forward Osmosis Membrane: Porous Graphene
,”
J. Mater. Chem. A
,
2
(
11
), pp.
4023
4028
.10.1039/c3ta14256f
13.
Heiranian
,
M.
,
Farimani
,
A. B.
, and
Aluru
,
N. R.
,
2015
, “
Water Desalination With a Single-Layer MoS2 Nanopore
,”
Nat. Commun.
,
6
(
1
), p.
8616
.10.1038/ncomms9616
14.
Zhu
,
C.
,
Li
,
H.
,
Zeng
,
X. C.
,
Wang
,
E. G.
, and
Meng
,
S.
,
2013
, “
Quantized Water Transport: Ideal Desalination Through Graphyne-4 Membrane
,”
Sci. Rep.
,
3
(
1
), p.
3163
.10.1038/srep03163
15.
Xue
,
M.
,
Qiu
,
H.
, and
Guo
,
W.
,
2013
, “
Exceptionally Fast Water Desalination at Complete Salt Rejection by Pristine Graphyne Monolayers
,”
Nanotechnology
,
24
(
50
), p.
505720
.10.1088/0957-4484/24/50/505720
16.
Kou
,
J.
,
Zhou
,
X.
,
Chen
,
Y.
,
Lu
,
H.
,
Wu
,
F.
, and
Fan
,
J.
,
2013
, “
Water Permeation Through Single-Layer Graphyne Membrane
,”
J. Chem. Phys.
,
139
(
6
), p.
064705
.10.1063/1.4817596
17.
Lin
,
L.-C.
,
Choi
,
J.
, and
Grossman
,
J. C.
,
2015
, “
Two-Dimensional Covalent Triazine Framework as an Ultrathin-Film Nanoporous Membrane for Desalination
,”
Chem. Commun.
,
51
(
80
), pp.
14921
14924
.10.1039/C5CC05969K
18.
Song
,
Z.
, and
Xu
,
Z.
,
2015
, “
Ultimate Osmosis Engineered by the Pore Geometry and Functionalization of Carbon Nanostructures
,”
Sci. Rep.
,
5
(
1
), p.
10597
.10.1038/srep10597
19.
Lin
,
S.
, and
Buehler
,
M. J.
,
2013
, “
Mechanics and Molecular Filtration Performance of Graphyne Nanoweb Membranes for Selective Water Purification
,”
Nanoscale
,
5
(
23
), pp.
11801
11807
.10.1039/c3nr03241h
20.
Kou
,
J.
,
Zhou
,
X.
,
Lu
,
H.
,
Wu
,
F.
, and
Fan
,
J.
,
2014
, “
Graphyne as the Membrane for Water Desalination
,”
Nanoscale
,
6
(
3
), pp.
1865
1870
.10.1039/C3NR04984A
21.
Cohen-Tanugi
,
D.
,
Lin
,
L.-C.
, and
Grossman
,
J. C.
,
2016
, “
Multilayer Nanoporous Graphene Membranes for Water Desalination
,”
Nano Lett.
,
16
(
2
), pp.
1027
1033
.10.1021/acs.nanolett.5b04089
22.
Cohen-Tanugi
,
D.
, and
Grossman
,
J. C.
,
2014
, “
Water Permeability of Nanoporous Graphene at Realistic Pressures for Reverse Osmosis Desalination
,”
J. Chem. Phys.
,
141
(
7
), p.
074704
.10.1063/1.4892638
23.
Celebi
,
K.
,
Buchheim
,
J.
,
Wyss
,
R. M.
,
Droudian
,
A.
,
Gasser
,
P.
,
Shorubalko
,
I.
,
Kye
,
J.-I.
,
Lee
,
C.
, and
Park
,
H. G.
,
2014
, “
Ultimate Permeation Across Atomically Thin Porous Graphene
,”
Science
,
344
(
6181
), pp.
289
292
.10.1126/science.1249097
24.
O'Hern
,
S. C.
,
Stewart
,
C. A.
,
Boutilier
,
M. S. H.
,
Idrobo
,
J.-C.
,
Bhaviripudi
,
S.
,
Das
,
S. K.
,
Kong
,
J.
,
Laoui
,
T.
,
Atieh
,
M.
, and
Karnik
,
R.
,
2012
, “
Selective Molecular Transport Through Intrinsic Defects in a Single Layer of CVD Graphene
,”
ACS Nano
,
6
(
11
), pp.
10130
10138
.10.1021/nn303869m
25.
Boutilier
,
M. S. H.
,
Sun
,
C.
,
O'Hern
,
S. C.
,
Au
,
H.
,
Hadjiconstantinou
,
N. G.
, and
Karnik
,
R.
,
2014
, “
Implications of Permeation Through Intrinsic Defects in Graphene on the Design of Defect-Tolerant Membranes for Gas Separation
,”
ACS Nano
,
8
(
1
), pp.
841
849
.10.1021/nn405537u
26.
Boutilier
,
M. S. H.
,
Jang
,
D.
,
Idrobo
,
J.-C.
,
Kidambi
,
P. R.
,
Hadjiconstantinou
,
N. G.
, and
Karnik
,
R.
,
2017
, “
Molecular Sieving Across Centimeter-Scale Single-Layer Nanoporous Graphene Membranes
,”
ACS Nano
,
11
(
6
), pp.
5726
5736
.10.1021/acsnano.7b01231
27.
Sampson
,
R. A.
,
1891
, “
On Stokes's Current Function
,”
Philos. Trans. R. Soc. A
,
182
, pp.
449
518
.10.1098/RSTA.1891.0012
28.
Jang
,
D.
,
Idrobo
,
J.-C.
,
Laoui
,
T.
, and
Karnik
,
R.
,
2017
, “
Water and Solute Transport Governed by Tunable Pore Size Distributions in Nanoporous Graphene Membranes
,”
ACS Nano
,
11
(
10
), pp.
10042
10052
.10.1021/acsnano.7b04299
29.
Dagan
,
Z.
,
Weinbaum
,
S.
, and
Pfeffer
,
R.
,
1982
, “
An Infinite-Series Solution for the Creeping Motion Through an Orifice of Finite Length
,”
J. Fluid Mech.
,
115
(
1
), pp.
505
523
.10.1017/S0022112082000883
30.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1986
,
Conduction of Heat in Solids
, 2nd ed.,
Oxford University Press
,
Oxford, UK
.
31.
Rankin
,
D. J.
,
Bocquet
,
L.
, and
Huang
,
D. M.
,
2019
, “
Entrance Effects in Concentration-Gradient-Driven Flow Through an Ultrathin Porous Membrane
,”
J. Chem. Phys.
,
151
(
4
), p.
044705
.10.1063/1.5108700
32.
Faucher
,
S.
,
Aluru
,
N.
,
Bazant
,
M. Z.
,
Blankschtein
,
D.
,
Brozena
,
A. H.
,
Cumings
,
J.
,
Pedro de Souza
,
J.
, et al.,
2019
, “
Critical Knowledge Gaps in Mass Transport Through Single-Digit Nanopores: A Review and Perspective
,”
J. Phys. Chem. C
,
123
(
35
), pp.
21309
21326
.10.1021/acs.jpcc.9b02178
33.
Bauer
,
H. F.
,
1988
, “
Mass Transport in a Converging-Diverging Nozzle
,”
Wärme Stoffübertragung
,
22
(
3–4
), pp.
201
208
.10.1007/BF01052988
34.
Telles
,
A. S.
,
Queiroz
,
E.
, and
Filho
,
G.
,
2001
, “
Solutions of the Extended Graetz Problem
,”
Int. J. Heat Mass Transfer
,
44
(
2
), pp.
471
483
.10.1016/S0017-9310(00)00107-1
35.
Papoutsakis
,
E.
,
Ramkrishna
,
D.
, and
Lim
,
H. C.
,
1980
, “
The Extended Graetz Problem With Dirichlet Wall Boundary Conditions
,”
Appl. Sci. Res.
,
36
(
1
), p.
13
.10.1007/BF00420067
36.
Acrivos
,
A.
,
1980
, “
The Extended Graetz Problem at Low Peclet Numbers
,”
Appl. Sci. Res.
,
36
(
1
), pp.
35
40
.10.1007/BF00420068
37.
Ebadian
,
M.
, and
Zhang
,
H.
,
1989
, “
An Exact Solution of Extended Graetz Problem With Axial Heat Conduction
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1709
1717
.10.1016/0017-9310(89)90053-7
38.
Cotta
,
R. M.
,
1993
,
Integral Transforms in Computational Heat and Fluid Flow
,
CRC Press
, Ann Arbor, MI.
39.
Erdogan
,
F.
,
1963
, “
On the Approximate Solutions of Heat-Conduction Problems
,”
ASME J. Heat Transfer-Trans. ASME
,
85
(
3
), pp.
203
207
.10.1115/1.3686066
40.
Fudym
,
O.
,
Batsale
,
J.-C.
,
Santander
,
R.
, and
Bubnovich
,
V.
,
2004
, “
Analytical Solution of Coupled Diffusion Equations in Semi-Infinite Media
,”
ASME J. Heat Transfer-Trans. ASME
,
126
(
3
), pp.
471
475
.10.1115/1.1731317
41.
Sphaier
,
L.
,
2012
, “
Integral Transform Solution for Heat Transfer in Parallel-Plates Micro-Channels: Combined Electroosmotic and Pressure Driven Flows With Isothermal Walls
,”
Int. Commun. Heat Mass Transfer
,
39
(
6
), pp.
769
775
.10.1016/j.icheatmasstransfer.2012.05.010
42.
Knupp
,
D. C.
,
Naveira-Cotta
,
C. P.
, and
Cotta
,
R. M.
,
2012
, “
Theoretical Analysis of Conjugated Heat Transfer With a Single Domain Formulation and Integral Transforms
,”
Int. Commun. Heat Mass Transfer
,
39
(
3
), pp.
355
362
.10.1016/j.icheatmasstransfer.2011.12.012
43.
Xu
,
F.
, and
Ma
,
H.
,
2012
, “
Analytical Solution of the Graetz Problem Extended to Slip-Flow in Microtube
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
10
), p.
104501
.10.1115/1.4006717
44.
Lahjomri
,
J.
, and
Oubarra
,
A.
,
1999
, “
Analytical Solution of the Graetz Problem With Axial Conduction
,”
ASME J. Heat Transfer-Trans. ASME
,
121
(
4
), pp.
1078
1083
.10.1115/1.2826060
45.
Arfken
,
G. B.
, and
Weber
,
H. J.
,
2005
,
Mathematical Methods for Physicists
, 6th ed.,
Elsevier Academic Press
, Boston, MA.
46.
Ishigami
,
M.
,
Chen
,
J. H.
,
Cullen
,
W. G.
,
Fuhrer
,
M. S.
, and
Williams
,
E. D.
,
2007
, “
Atomic Structure of Graphene on SiO2
,”
Nano Lett.
,
7
(
6
), pp.
1643
1648
.10.1021/nl070613a
47.
White
,
F. M.
,
2006
,
Viscous Fluid Flow
, 3rd ed.,
McGraw-Hill
, Toronto, ON, Canada.
48.
Lightfoot
,
E. N.
,
Bird
,
R. B.
, and
Stewart
,
W. E.
,
2006
,
Transport Phenomena
, Revised 2nd ed.,
Wiley
, New York.
49.
Ferziger
,
J. H.
, and
Perić
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
, 3rd rev. ed.,
Springer-Verlag
, New York.
You do not currently have access to this content.