Abstract

Convective heat transfer for a rotating sphere around a vertical axis floating in stationary fluid is studied numerically using the model of volume of fluid (VOF). The effects of the immersion angle and rotating velocity on the streamlines, isotherm and volume fraction contours, mean and local Nusselt numbers, volumetric flow rate, and water film thickness are investigated for the angular rotational velocity, 1500Ω3500 and the immersion angle, 30degθi60deg. The results show that the sphere's rotation causes the liquid to be sucked from the lower pole of the sphere, which is thrown out after stopping in the equator. Due to the strong jet flow in the equatorial zone, heat is transferred by forced convection, but diffusion is dominant for heat transfer in other zones. At low rotational velocities, the liquid film is thrown out of the equator in the form of large droplets, but as the rotational velocity increases, its shape changes to a jet. Also, it is found that there is a direct relation between the Reynolds number and mean Nusselt number at different immersion angles so that an average of 27.5% increase for the mean Nusselt number is achieved by increasing the immersion angle from θi=30deg to θi=60deg. In addition, at a constant rotational velocity, the volumetric flow rate increases with increasing immersion angle.

References

1.
Langley
,
K. R.
,
Maynes
,
D.
, and
Truscott
,
T. T.
,
2015
, “
Eggs and Milk: Spinning Spheres Partially Immersed in a Liquid Bath
,”
Phys. Fluids
,
27
(
3
), p.
032102
.10.1063/1.4913574
2.
von Karman
,
T.
,
1921
, “
Uber Laminare Und Turbulente Reibung
,”
Z. Angew. Math. Mech.
,
1
, pp.
233
252
.10.1002/zamm.19210010401
3.
Lee
,
D.
,
Jang
,
H.
,
Lee
,
B. J.
,
Choi
,
W.
, and
Byon
,
C.
,
2019
, “
Internal Natural Convection Around a Sphere in a Rectangular Chamber
,”
Int. J. Heat Mass Transfer
,
136
, pp.
501
509
.10.1016/j.ijheatmasstransfer.2019.03.023
4.
Souayeh
,
B.
,
Hdhiri
,
N.
,
Alam
,
M. W.
,
Hammami
,
F.
, and
Alfannakh
,
H.
,
2020
, “
Convective Heat Transfer and Entropy Generation Around a Sphere Within Cuboidal Enclosure
,”
J. Thermophys. Heat Transfer
,
34
(
3
), pp.
605
625
.10.2514/1.T5960
5.
Gallegos
,
A. D.
, and
Málaga
,
C.
,
2017
, “
Natural Convection in Eccentric Spherical Annuli
,”
Eur. J. Mech. B/Fluids
,
65
, pp.
464
471
.10.1016/j.euromechflu.2017.02.007
6.
Kitamura
,
K.
,
Mitsuishi
,
A.
,
Suzuki
,
T.
, and
Misumi
,
T.
,
2015
, “
Fluid Flow and Heat Transfer of high-Rayleigh-Number Natural Convection Around Heated Spheres
,”
Int. J. Heat Mass Transfer
,
86
, pp.
149
157
.10.1016/j.ijheatmasstransfer.2015.02.081
7.
Singh
,
B.
, and
Dash
,
S. K.
,
2015
, “
Natural Convection Heat Transfer From a Finned Sphere
,”
Int. J. Heat Mass Transfer
,
81
, pp.
305
324
.10.1016/j.ijheatmasstransfer.2014.10.028
8.
Zhang
,
J.
,
Zhen
,
Q.
,
Liu
,
J.
, and
Lu
,
W.-Q.
,
2019
, “
Effect of Spacing on Laminar Natural Convection Flow and Heat Transfer From Two Spheres in Vertical Arrangement
,”
Int. J. Heat Mass Transfer
,
134
, pp.
852
865
.10.1016/j.ijheatmasstransfer.2019.01.065
9.
Tiwari
,
S. S.
,
Pal
,
E.
,
Bale
,
S.
,
Minocha
,
N.
,
Patwardhan
,
A. W.
,
Nandakumar
,
K.
, and
Joshi
,
J. B.
,
2020
, “
Flow Past a Single Stationary Sphere, 2. Regime Mapping and Effect of External Disturbances
,”
Powder Technol.
,
365
, pp.
215
243
.10.1016/j.powtec.2019.04.032
10.
Pinar
,
E.
,
Sahin
,
B.
,
Ozgoren
,
M.
, and
Akilli
,
H.
,
2013
, “
Experimental Study of Flow Structures Around Side-by-Side Spheres
,”
Ind. Eng. Chem. Res.
,
52
(
40
), pp.
14492
14503
.10.1021/ie4022732
11.
Mishra
,
G.
, and
Chhabra
,
R. P.
,
2021
, “
Influence of Flow Pulsations and Yield Stress on Heat Transfer From a Sphere
,”
Appl. Math. Modell.
,
90
, pp.
1069
1098
.10.1016/j.apm.2020.10.003
12.
Kishore
,
N.
, and
Ramteke
,
R. R.
,
2016
, “
Forced Convective Heat Transfer From Spheres to Newtonian Fluids in Steady Axisymmetric Flow Regime With Velocity Slip at Fluid–Solid Interface
,”
Int. J. Therm. Sci.
,
105
, pp.
206
217
.10.1016/j.ijthermalsci.2016.03.009
13.
Will
,
J. B.
,
Kruyt
,
N. P.
, and
Venner
,
C. H.
,
2017
, “
An Experimental Study of Forced Convective Heat Transfer From Smooth, Solid Spheres
,”
Int. J. Heat Mass Transfer
,
109
, pp.
1059
1067
.10.1016/j.ijheatmasstransfer.2017.02.018
14.
Sasmal
,
C.
,
Shyam
,
R.
, and
Chhabra
,
R. P.
,
2013
, “
Laminar Flow of Power-Law Fluids Past a Hemisphere: Momentum and Forced Convection Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
,
63
, pp.
51
64
.10.1016/j.ijheatmasstransfer.2013.03.059
15.
Khanafer
,
K.
, and
Aithal
,
S. M.
,
2017
, “
Mixed Convection Heat Transfer in a Lid-Driven Cavity With a Rotating Circular Cylinder
,”
Int. Commun. Heat Mass Transfer
,
86
, pp.
131
142
.10.1016/j.icheatmasstransfer.2017.05.025
16.
Kareem
,
A. K.
, and
Gao
,
S.
,
2017
, “
Mixed Convection Heat Transfer of Turbulent Flow in a Three-Dimensional Lid-Driven Cavity With a Rotating Cylinder
,”
Int. J. Heat Mass Transfer
,
112
, pp.
185
200
.10.1016/j.ijheatmasstransfer.2017.04.118
17.
Roslan
,
R.
,
Saleh
,
H.
, and
Hashim
,
I.
,
2012
, “
Effect of Rotating Cylinder on Heat Transfer in a Square Enclosure Filled With Nanofluids
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
7247
7256
.10.1016/j.ijheatmasstransfer.2012.07.051
18.
Shirazi
,
M.
,
Shateri
,
A.
, and
Bayareh
,
M.
,
2018
, “
Numerical Investigation of Mixed Convection Heat Transfer of a Nanofluid in a Circular Enclosure With a Rotating Inner Cylinder
,”
J. Therm. Anal. Calorim.
,
133
(
2
), pp.
1061
1073
.10.1007/s10973-018-7186-y
19.
Kareem
,
A. K.
, and
Gao
,
S.
,
2018
, “
A Comparison Study of Mixed Convection Heat Transfer of Turbulent Nanofluid Flow in a Three-Dimensional Lid-Driven Enclosure With a Clockwise Versus an Anticlockwise Rotating Cylinder
,”
Int. Commun. Heat Mass Transfer
,
90
, pp.
44
55
.10.1016/j.icheatmasstransfer.2017.10.016
20.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2015
, “
Numerical Investigation and Reduced Order Model of Mixed Convection at a Backward Facing Step With a Rotating Cylinder Subjected to Nanofluid
,”
Comput. Fluids
,
109
, pp.
27
37
.10.1016/j.compfluid.2014.12.007
21.
D'Alessio
,
S. J. D.
,
2018
, “
An Analytical Study of the Early Stages of Unsteady Free Convective Flow From a Differentially Heated Rotating Sphere at Large Grashof Numbers
,”
Int. J. Comput. Methods Exp. Meas.
,
7
(
1
), pp.
57
67
.10.2495/CMEM-V7-N1-57-67
22.
Chen
,
Z.
,
Yang
,
L. M.
,
Shu
,
C.
,
Zhao
,
X.
,
Liu
,
N. Y.
, and
Liu
,
Y. Y.
,
2021
, “
Mixed Convection Between Rotating Sphere and Concentric Cubical Enclosure
,”
Phys. Fluids
,
33
(
1
), p.
013605
.10.1063/5.0039830
23.
Jabari Moghadam
,
A.
, and
Baradaran Rahimi
,
A.
,
2009
, “
A Numerical Study of Flow and Heat Transfer Between Two Concentric Rotating Spheres With Time-Dependent Angular Velocities
,”
Sci. Iran.
,
16
(
3
), pp.
197
211
.
24.
Jabari Moghadam
,
A.
, and
Baradaran Rahimi
,
A.
,
2009
, “
Similarity Solution in the Study of Flow and Heat Transfer Between Two Rotating Spheres With Constant Angular Velocities
,”
Sci. Iran.
,
16
(
4
), pp.
354
362
.
25.
Hao
,
X.
,
Yang
,
X.
,
Peng
,
C.
, and
Yao
,
Z.
,
2020
, “
Heat Transfer Between Rotating Sphere and Spherical-Surface Heat Sink
,”
J. Therm. Anal. Calorim.
,
141
(
1
), pp.
413
420
.10.1007/s10973-019-08983-2
26.
Nigam
,
S. D.
,
1954
, “
Note on the Boundary Layer on a Rotating Sphere
,”
Z. Angew. Math. Phys. ZAMP
,
5
(
2
), pp.
151
155
.10.1007/BF01600773
27.
Singh
,
S. N.
,
1960
, “
Heat Transfer by Laminar Flow From a Rotating Sphere
,”
Appl. Sci. Res.
,
9
(
1
), pp.
197
205
.10.1007/BF00382201
28.
Kreith
,
F.
,
Roberts
,
L. G.
,
Sullivan
,
J. A.
, and
Sinha
,
S. N.
,
1963
, “
Convection Heat Transfer and Flow Phenomena of Rotating Spheres
,”
Int. J. Heat Mass Transfer
,
6
(
10
), pp.
881
895
.10.1016/0017-9310(63)90079-6
29.
Feng
,
Z.-G.
,
2014
, “
Direct Numerical Simulation of Forced Convective Heat Transfer From a Heated Rotating Sphere in Laminar Flows
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
4
), p. 040101. 10.1115/1.4026307
30.
Samad
,
A.
, and
Garrett
,
S. J.
,
2010
, “
On the Laminar Boundary-Layer Flow Over Rotating Spheroids
,”
Int. J. Eng. Sci.
,
48
(
12
), pp.
2015
2027
.10.1016/j.ijengsci.2010.05.001
31.
Gutiérrez
,
G.
,
Fehr
,
C.
,
Calzadilla
,
A.
, and
Figueroa
,
D.
,
1998
, “
Fluid Flow Up the Wall of a Spinning Egg
,”
Am. J. Phys.
,
66
(
5
), pp.
442
445
.10.1119/1.18886
32.
Martinez
,
J.
,
Polatdemir
,
E.
,
Bansal
,
A.
,
Yifeng
,
W.
, and
Shengtao
,
W.
,
2006
, “
Fluid Flow Up a Spinning Egg and the Coriolis Force
,”
Eur. J. Phys.
,
27
(
4
), pp.
805
817
.10.1088/0143-0807/27/4/012
33.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
34.
Kohama
,
Y.
, and
Kobayashi
,
R.
,
1983
, “
Boundary-Layer Transition and the Behaviour of Spiral Vortices on Rotating Spheres
,”
J. Fluid Mech.
,
137
, pp.
153
164
.10.1017/S0022112083002335
35.
Garrett
,
S. J.
, and
Peake
,
N.
,
2002
, “
The Stability and Transition of the Boundary Layer on a Rotating Sphere
,”
J. Fluid Mech.
,
456
, pp.
199
218
.10.1017/S0022112001007571
36.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
You do not currently have access to this content.