Abstract

The local characteristics and behavior of condensing R134a flows in a horizontal pipe, at mass fluxes of 100, 200, and 400 kg m−2 s−1, saturation temperature of 40 °C, and mean vapor qualities of 0.25, 0.50, and 0.75, are investigated numerically. The local results demonstrate an increase in condensate film thickness from a particular angular position, which is influenced by the vapor quality of the flow to the bottom of the pipe. The heat transfer coefficient decreases around the pipe circumference from the top to the bottom of the pipe. The results indicate the existence of a particular angular position where the film thickness and the heat transfer coefficient change significantly due to the stratified condensate layer. Furthermore, the velocity profiles of the condensing flows are noted to be asymmetrical due to the stratified condensate layer at the bottom of the pipe. The mean flow velocity and the heat transfer coefficient decrease along the condensation length. The local results demonstrate that the heat transfer coefficient is not merely affected by the condensate film thickness but also by the effective thermal conductivity of the flow. The findings demonstrate the capacity of local measurements in capturing fine features of condensing flows.

References

1.
Kakac
,
S.
,
Liu
,
H.
, and
Pramuanjaroenkij
,
A.
,
2012
,
Heat Exchangers: Selection, Rating, and Thermal Design
, Vol.
3
,
CRC Press
,
Boca Raton, FL
.
2.
Lips
,
S.
, and
Meyer
,
J.
,
2012
, “
Experimental Study of Convective Condensation in an Inclined Smooth Tube. Part I: Inclination Effect on Flow Pattern and Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
395
404
.10.1016/j.ijheatmasstransfer.2011.09.033
3.
Park
,
I.
,
O'Neill
,
L.
,
Kharangate
,
C.
, and
Mudawar
,
I.
,
2017
, “
Assessment of Body Force Effects in Flow Condensation, Part I: Experimental Investigation of Liquid Film Behavior for Different Orientations
,”
Int. J. Heat Mass Transfer
,
106
, pp.
295
312
.10.1016/j.ijheatmasstransfer.2016.05.065
4.
Chen
,
Y.
,
Yang
,
K.
,
Chang
,
Y.
, and
Wang
,
C.
,
2001
, “
Two-Phase Pressure Drop of Air–Water and R410A in Small Horizontal Tubes
,”
Int. J. Multiphase Flow
,
27
(
7
), pp.
1293
1299
.10.1016/S0301-9322(01)00004-0
5.
Meyer
,
J.
,
Dirker
,
J.
, and
Adelaja
,
A.
,
2014
, “
Condensation Heat Transfer in Smooth Inclined Tubes for R134a at Different Saturation Temperatures
,”
Int. J. Heat Mass Transfer
,
70
, pp.
515
525
.10.1016/j.ijheatmasstransfer.2013.11.038
6.
El Hajal
,
J.
,
Thome
,
J.
, and
Cavallini
,
A.
,
2003
, “
Condensation in Horizontal Tubes, Part 1: Two-Phase Flow Pattern Map
,”
Int. J. Heat Mass Transfer
,
46
(
18
), pp.
3349
3363
.10.1016/S0017-9310(03)00139-X
7.
Suliman
,
R.
,
Liebenberg
,
L.
, and
Meyer
,
J.
,
2009
, “
Improved Flow Pattern Map for Accurate Prediction of the Heat Transfer Coefficients During Condensation of R134a in Smooth Horizontal Tubes and Within the Low-Mass Flux Range
,”
Int. J. Heat Mass Transfer
,
52
(
25–26
), pp.
5701
5711
.10.1016/j.ijheatmasstransfer.2009.08.017
8.
Shah
,
M.
,
1979
, “
A General Correlation for Heat Transfer During Film Condensation Inside Pipes
,”
Int. J. Heat Mass Transfer
,
22
(
4
), pp.
547
556
.10.1016/0017-9310(79)90058-9
9.
Thome
,
J.
,
El Hajal
,
J.
, and
Cavallini
,
A.
,
2003
, “
Condensation in Horizontal Tubes, Part 2: New Heat Transfer Model Based on Flow Regimes
,”
Int. J. Heat Mass Transfer
,
46
(
18
), pp.
3365
3387
.10.1016/S0017-9310(03)00140-6
10.
Cavallini
,
A.
,
Del Col
,
D.
,
Doretti
,
L.
,
Matkovic
,
M.
,
Rossetto
,
L.
,
Zilio
,
C.
, and
Censi
,
G.
,
2006
, “
Condensation in Horizontal Smooth Tubes: A New Heat Transfer Model for Heat Exchanger Design
,”
Heat Transfer Eng.
,
27
(
8
), pp.
31
38
.10.1080/01457630600793970
11.
Lips
,
S.
, and
Meyer
,
J.
,
2012
, “
Experimental Study of Convective Condensation in an Inclined Smooth Tube. Part II: Inclination Effect on Pressure Drops and Void Fractions
,”
Int. J. Heat Mass Transfer
,
55
(
1–3
), pp.
405
412
.10.1016/j.ijheatmasstransfer.2011.09.034
12.
Lips
,
S.
, and
Meyer
,
J.
,
2012
, “
Stratified Flow Model for Convective Condensation in an Inclined Tube
,”
Int. J. Heat Fluid Flow
,
36
, pp.
83
91
.10.1016/j.ijheatfluidflow.2012.03.005
13.
Lips
,
S.
, and
Meyer
,
J.
,
2012
, “
Effect of Gravity Forces on Heat Transfer and Pressure Drop During Condensation of R134a
,”
Microgravity Sci. Technol.
,
24
(
3
), pp.
157
164
.10.1007/s12217-011-9292-3
14.
Ewim
,
D.
,
Adelaja
,
A.
,
Onyiriuka
,
E.
,
Meyer
,
J.
, and
Huan
,
Z.
,
2021
, “
Modelling of Heat Transfer Coefficients During Condensation Inside an Enhanced Inclined Tube
,”
J. Therm. Anal. Calorim.
,
146
(
1
), pp.
103
115
.10.1007/s10973-020-09930-2
15.
Da Riva
,
E.
, and
Del Col
,
D.
,
2009
, “
Numerical Simulation of Condensation in a Minichannel
,”
ASME
Paper No. MNHMT2009-18245.10.1115/MNHMT2009-18245
16.
Da Riva
,
E.
, and
Del Col
,
D.
,
2011
, “
Effect of Gravity During Condensation of R134a in a Circular Minichannel
,”
Microgravity Sci. Technol.
,
23
(
S1
), pp.
87
97
.10.1007/s12217-011-9275-4
17.
Da Riva
,
E.
, and
Del Col
,
D.
,
2012
, “
Numerical Simulation of Laminar Liquid Film Condensation in a Horizontal Circular Minichannel
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
5
), p.
051019
.10.1115/1.4005710
18.
Da Riva
,
E.
,
Del Col
,
D.
, and
Cavallini
,
A.
,
2010
, “
Modelling of Condensation in a Circular Minichannel by Means of the VOF Method
,”
ASME
Paper No. IHTC14-22857.10.1115/IHTC14-22857
19.
Da Riva
,
E.
,
Del Col
,
D.
,
Garimella
,
S.
, and
Cavallini
,
A.
,
2012
, “
The Importance of Turbulence During Condensation in a Horizontal Circular Minichannel
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3470
3481
.10.1016/j.ijheatmasstransfer.2012.02.026
20.
Ganapathy
,
H.
,
Shooshtari
,
A.
,
Choo
,
K.
,
Dessiatoun
,
S.
,
Alshehhi
,
M.
, and
Ohadi
,
M.
,
2012
, “
Numerical Analysis of Condensation of R134A in a Single Microchannel
,”
ASME
Paper No. IMECE2012-89707.10.1115/IMECE2012-89707
21.
Ganapathy
,
H.
,
Shooshtari
,
A.
,
Choo
,
K.
,
Dessiatoun
,
S.
,
Alshehhi
,
M.
, and
Ohadi
,
M.
,
2013
, “
Volume of Fluid-Based Numerical Modeling of Condensation Heat Transfer and Fluid Flow Characteristics in Microchannels
,”
Int. J. Heat Mass Transfer
,
65
, pp.
62
72
.10.1016/j.ijheatmasstransfer.2013.05.044
22.
Kharangate
,
C.
,
Lee
,
H.
,
Park
,
I.
, and
Mudawar
,
I.
,
2016
, “
Experimental and Computational Investigation of Vertical Upflow Condensation in a Circular Tube
,”
Int. J. Heat Mass Transfer
,
95
, pp.
249
263
.10.1016/j.ijheatmasstransfer.2015.11.010
23.
Lee
,
H.
,
Kharangate
,
C.
,
Mascarenhas
,
N.
,
Park
,
I.
, and
Mudawar
,
I.
,
2015
, “
Experimental and Computational Investigation of Vertical Downflow Condensation
,”
Int. J. Heat Mass Transfer
,
85
, pp.
865
879
.10.1016/j.ijheatmasstransfer.2015.02.037
24.
Abadi
,
N.
,
Meyer
,
J.
, and
Dirker
,
J.
,
2018
, “
Effect of Inclination Angle on the Condensation of R134a Inside an Inclined Smooth Tube
,”
Chem. Eng. Res. Des.
,
132
, pp.
346
357
.10.1016/j.cherd.2018.01.044
25.
Basaran
,
A.
,
Benim
,
A.
, and
Yurddas
,
A.
,
2019
, “
Prediction of Heat and Fluid Flow in Microchannel Condensation
,”
E3S Web Conf.
,
128
, p.
01015
.10.1051/e3sconf/201912801015
26.
Zhang
,
L.
,
Liu
,
J.
, and
Xu
,
X.
,
2021
, “
Numerical Simulation of Heat Transfer Performance of R410A in Condensing-Superheated Zone
,”
Int. J. Refrig.
,
128
, pp.
206
217
.10.1016/j.ijrefrig.2021.03.019
27.
O'Donovan
,
A.
,
2015
, “
On the Thermal and Fluidic Characteristics of Steam Condensation in an Air-Cooled Condenser
,” Ph.D. thesis,
University of Limerick
,
Limerick, Ireland
.
28.
Anderson
,
J.
, and
Wendt
,
J.
,
1995
,
Computational Fluid Dynamics
, Vol.
206
,
Springer
, Berlin, Heidelberg.
29.
Yan
,
J.
,
Chen
,
G.
,
Liu
,
C.
,
Tang
,
L.
, and
Chen
,
Q.
,
2017
, “
Experimental Investigations on a R134a Ejector Applied in a Refrigeration System
,”
Appl. Therm. Eng.
,
110
, pp.
1061
1065
.10.1016/j.applthermaleng.2016.09.046
30.
Mota-Babiloni
,
A.
,
Makhnatch
,
P.
,
Khodabandeh
,
R.
, and
Navarro-Esbrí
,
J.
,
2017
, “
Experimental Assessment of R134a and Its Lower GWP Alternative R513A
,”
Int. J. Refrig.
,
74
, pp.
682
688
.10.1016/j.ijrefrig.2016.11.021
31.
Bolaji
,
B.
,
2010
, “
Experimental Study of R152a and R32 to Replace R134a in a Domestic Refrigerator
,”
Energy
,
35
(
9
), pp.
3793
3798
.10.1016/j.energy.2010.05.031
32.
Menter
,
F.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
33.
Ansys
,
2013
,
ANSYS Fluent Theory Guide
,
ANSYS
,
Canonsburg, PA
.
34.
Lee
,
W.
,
1979
, “
A Pressure Iteration Scheme for Two-Phase Flow Modeling
,” Energy Division, Los Alamos Scientific Laboratory, Los Alamos, NM, Technical Paper No. LA-UR-79-975.
35.
Patankar
,
S.
, and
Spalding
,
D.
,
1983
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion
,
Pergamon Press
, pp.
54
73
, New York.
36.
Youngs
,
D.
,
1982
, “
Time-Dependent Multi-Material Flow With Large Fluid Distortion
,”
Numerical Methods for Fluid Dynamics
,
K. W.
Morton
and
M. J.
Baines
, eds.,
Academic Press
,
New York
.
37.
Brackbill
,
J.
,
Kothe
,
D.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
38.
Park
,
I.
,
Lee
,
H.
, and
Mudawar
,
I.
,
2015
, “
Determination of Flow Regimes and Heat Transfer Coefficient for Condensation in Horizontal Tubes
,”
Int. J. Heat Mass Transfer
,
80
, pp.
698
716
.10.1016/j.ijheatmasstransfer.2014.09.035
39.
Dobson
,
M.
, and
Chato
,
J.
,
1998
, “
Condensation in Smooth Horizontal Tubes
,”
ASME J. Heat Transfer-Trans. ASME
,
120
(
1
), pp.
193
213
.10.1115/1.2830043
40.
Jung
,
D.
,
Song
,
K.
,
Cho
,
Y.
, and
Kim
,
S.
,
2003
, “
Flow Condensation Heat Transfer Coefficients of Pure Refrigerants
,”
Int. J. Refrig.
,
26
(
1
), pp.
4
11
.10.1016/S0140-7007(02)00082-8
41.
Lee
,
H.
,
Park
,
I.
,
Konishi
,
C.
,
Mudawar
,
I.
,
May
,
R. I.
,
Juergens
,
J. R.
,
Wagner
,
J. D.
,
2014
, “
Experimental Investigation of Flow Condensation in Microgravity
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
2
), p.
021502
.10.1115/1.4025683
42.
Prithiviraj
,
M.
, and
Andrews
,
M. J.
,
1998
, “
Three Dimensional Numerical Simulation of Shell-and-Tube Heat Exchangers. Part I: Foundation and Fluid Mechanics
,”
Numer. Heat Transfer, Part A: Appl.
,
33
(
8
), pp.
799
816
.10.1080/10407789808913967
43.
Bhatkar
,
V.
,
Kriplani
,
V.
, and
Awari
,
G.
,
2013
, “
Alternative Refrigerants in Vapour Compression Refrigeration Cycle for Sustainable Environment: A Review of Recent Research
,”
Int. J. Environ. Sci. Technol.
,
10
(
4
), pp.
871
880
.10.1007/s13762-013-0202-7
You do not currently have access to this content.