Abstract

This article presents new semi-analytical solutions for transient heat conduction in a slab, which exchanges heat at the surface with its surroundings via convection, radiation, or simultaneous convection–radiation mechanisms. The concept of thermal penetration depth together with the integral method of heat balances form the basis of the formulation. Explicit expressions are derived that eliminate the need for numerical integration of the ordinary differential equations (ODEs) obtained from space integration of the heat equation. Verification of the temperature relations with a convection boundary condition is performed using an exact solution. In the case of radiation and combined convection–radiation boundary conditions, the accuracy of the explicit solutions is assessed against a numerical model. In all three cases, the new relations predict the surface temperature with high precision. For the radiation boundary condition, the computed midpoint temperature is also in excellent agreement with the numerical solution. In the case of convection heat exchange at the surface, the temperature at internal locations has close agreement with the exact solution for Biot numbers up to Bi = 1. The model prediction deviates from the exact solution in the interior positions for higher values of Bi with the highest deviation occurring at the center. For example, at Bi = 3, the highest relative error is 7.5%. Likewise, for the case of combined convection–radiation boundary conditions, the predicted midpoint temperature is found to closely follow the numerical solution at early stages of the process only. The predictability of the explicit solution of the convection-only boundary condition is more accurate than other approximate solutions at a Fourier number less than 0.2. Additional relations are presented for determination of the total heat transfer as a function of the Fourier and Biot numbers.

References

1.
Churchill
,
R. V.
,
1944
,
Modern Operational Mathematics in Engineering
,
McGraw-Hill
,
New York
.
2.
Landau
,
H. G.
,
1950
, “
Heat Conduction in a Melting Solid
,”
Q. Appl. Math.
,
8
(
1
), pp.
81
94
.10.1090/qam/33441
3.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
Oxford University Press
,
London
.
4.
Goodman
,
T. R.
,
1958
, “
The Heat-Balance Integral and Its Application to Problems Involving a Change of Phase
,”
Trans. ASME
,
80
(
2
), pp.
335
342
.10.1115/1.4012364
5.
Goodman
,
T. R.
,
1959
, “
The Heating of Slabs With Arbitrary Heat Inputs
,”
J. Aerosp. Sci.
,
26
(
3
), pp.
187
188
.10.2514/8.7994
6.
Goodman
,
T. R.
,
1964
, “
Application of Integral Methods to Transient Nonlinear Heat Transfer
,”
Adv. Heat Transfer
,
1
, pp.
51
122
.10.1016/S0065-2717(08)70097-2
7.
Ivrii
,
V.
,
2021
,
Partial Differential Equations
,
Department of Mathematics, University of Toronto
,
Toronto, ON, Canada
.
8.
Herman
,
R.
,
2015
,
Introduction to Partial Differential Equations
,
Department of Mathematics and Statistics, University of North Carolina
,
Wilmington, NC
.
9.
Evans
,
L. C.
,
2010
,
Partial Differential Equations
,
American Mathematical Society
,
Providence, RI
.
10.
Mitchell
,
S. L.
, and
Myers
,
T. G.
,
2010
, “
Improving the Accuracy of Heat Balance Integral Methods Applied to Thermal Problems With Time Dependent Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
53
(
17–18
), pp.
3540
3551
.10.1016/j.ijheatmasstransfer.2010.04.015
11.
Li
,
T.
,
Thunman
,
H.
, and
Ström
,
H.
,
2020
, “
A Fast-Solving Particle Model for Thermochemical Conversion of Biomass
,”
Combust. Flame
,
213
, pp.
117
131
.10.1016/j.combustflame.2019.11.018
12.
Lardner
,
T. J.
,
1967
, “
Approximate Solutions to Phase-Change Problems
,”
AIAA J.
,
5
(
11
), pp.
2079
2080
.10.2514/3.4379
13.
Mennig
,
J.
, and
Özişik
,
M. N.
,
1985
, “
Coupled Integral Equation Approach for Solving Melting or Solidification
,”
Int. J. Heat Mass Transfer
,
28
(
8
), pp.
1481
1485
.10.1016/0017-9310(85)90250-9
14.
Sudhakar
,
B.
,
1992
, “
An Integral Method for Non-Linear Moving Boundary Problems
,”
Chem. Eng. Sci.
,
47
(
2
), pp.
475
479
.10.1016/0009-2509(92)80035-B
15.
Sadoun
,
N.
,
Si-Ahmed
,
E. K.
, and
Colinet
,
P.
,
2006
, “
On the Refined Integral Method for the One-Phase Stefan Problem With Time-Dependent Boundary Conditions
,”
Appl. Math. Modell.
,
30
(
6
), pp.
531
544
.10.1016/j.apm.2005.06.003
16.
Mitchell
,
S. L.
, and
Myers
,
T. G.
,
2008
, “
Heat Balance Integral Method for One-Dimensional finite Ablation
,”
J. Thermophys. Heat Transfer
,
22
(
3
), pp.
508
514
.10.2514/1.31755
17.
Myers
,
T. G.
, and
Mitchell
,
S. L.
,
2011
, “
Application of the Combined Integral Method to Stefan Problems
,”
Appl. Math. Modell.
,
35
(
9
), pp.
4281
4294
.10.1016/j.apm.2011.02.049
18.
Mitchell
,
S. L.
,
2012
, “
Applying the Combined Integral Method to One-Dimensional Ablation
,”
Appl. Math. Modell.
,
36
(
1
), pp.
127
138
.10.1016/j.apm.2011.05.032
19.
Mitchell
,
S. L.
, and
Myers
,
T. G.
,
2012
, “
Application of Heat Balance Integral Methods to One-Dimensional Phase Change Problems
,”
Int. J. Differential Equations
,
2012
, p.
187902
.10.1155/2012/187902
20.
Crank
,
J.
, and
Nicolson
,
P.
,
1947
, “
A Practical Method for Numerical Evaluation of Solutions of Partial Differential Equations of the Heat-Conduction Type
,”
Proc. Cambridge Philos. Soc.
,
43
(
1
), pp.
50
67
.10.1017/S0305004100023197
21.
Davies
,
W.
, and
Carpenter
,
P. W.
,
1985
, “
Transient Conduction in a Slab With Chemical Reaction
,”
Int. Commun. Heat Mass Transfer
,
12
(
6
), pp.
667
676
.10.1016/0735-1933(85)90019-3
22.
Quintiere
,
J. G.
,
1992
, “
A Semi-Quantitative Model for the Burning Rate of Solid Materials
,” National Institute of Standards and Technology, Gaithersburg, MD, Report No. NISTIR 4840.
23.
Chen
,
Y.
,
Delichatsios
,
M. A.
, and
Motvalli
,
V.
,
1993
, “
Material Pyrolysis Properties, Part I: An Integral Model for One-Dimensional Transient Pyrolysis of Charring and Non-Charring Materials
,”
Combust. Sci. Technol.
,
88
(
5–6
), pp.
309
328
.10.1080/00102209308947242
24.
Moghtaderi
,
B.
,
Novozhilov
,
V.
,
Fletcher
,
D. F.
, and
Kent
,
J. H.
,
1995
, “
An Integral Model for the Pyrolysis of Non-Charring Materials
,” Fire Science and Technology –
Proceedings of The Asia-Oceania Symposium on Fire Science and Technology (AOFST 2)
, Khabarovsk, Russia, Sept. 13–17, pp.
308
319
.
25.
Moghtaderi
,
B.
,
Novozhilov
,
V.
,
Fletcher
,
D. F.
, and
Kent
,
J. H.
,
1997
, “
An Integral Model for the Transient Pyrolysis of Solid Materials
,”
Fire Mater.
,
21
(
1
), pp.
7
16
.10.1002/(SICI)1099-1018(199701)21:1<7::AID-FAM588>3.0.CO;2-T
26.
Spearpoint
,
M. J.
, and
Quintiere
,
J. G.
,
2000
, “
Predicting the Burning of Wood Using an Integral Model
,”
Combust. Flame
,
123
(
3
), pp.
308
325
.10.1016/S0010-2180(00)00162-0
27.
Theuns
,
E.
,
Merci
,
B.
,
Vierendeels
,
J.
, and
Vandevelde
,
P.
,
2005
, “
Critical Evaluation of an Integral Model for the Pyrolysis of Charring Materials
,”
Fire Saf. J.
,
40
(
2
), pp.
121
140
.10.1016/j.firesaf.2004.09.003
28.
Haseli
,
Y.
,
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2012
, “
A Simplified Pyrolysis Model of a Biomass Particle Based on Infinitesimally Thin Reaction Front Approximation
,”
Energy Fuels
,
26
(
6
), pp.
3230
3243
.10.1021/ef3002235
29.
Spearpoint
,
M. J.
, and
Quintiere
,
J. G.
,
2001
, “
Predicting the Piloted Ignition of Wood in the Cone Calorimeter Using an Integral Model—Effect of Species, Grain Orientation and Heat Flux
,”
Fire Saf. J.
,
36
(
4
), pp.
391
415
.10.1016/S0379-7112(00)00055-2
30.
Ji
,
J.
,
Cheng
,
Y.
,
Yang
,
L.
,
Guo
,
Z.
, and
Fan
,
W.
,
2006
, “
An Integral Model for Wood Auto-Ignition Under Variable Heat Flux
,”
J. Fire Sci.
,
24
(
5
), pp.
413
425
.10.1177/0734904106062138
31.
Haseli
,
Y.
,
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2012
, “
Analytical Solutions for Prediction of the Ignition Time of Wood Particles Based on a Time and Space Integral Method
,”
Thermochim. Acta
,
548
, pp.
65
75
.10.1016/j.tca.2012.09.001
32.
Crosbie
,
A. L.
, and
Viskanta
,
R.
,
1968
, “
Transient Heating or Cooling of a Plate by Combined Convection and Radiation
,”
Int. J. Heat Mass Transfer
,
11
(
2
), pp.
305
317
.10.1016/0017-9310(68)90159-2
33.
Davies
,
T. W.
,
1984
, “
The Radiant Cooling of a Finite Solid
,”
Int. Commun. Heat Mass Transfer
,
11
(
4
), pp.
311
321
.10.1016/0735-1933(84)90059-9
34.
Davies
,
T. W.
,
1985
, “
Transient Conduction in a Plate With Counteracting Convection and Thermal Radiation at the Boundaries
,”
Appl. Math. Modell.
,
9
(
5
), pp.
337
340
.10.1016/0307-904X(85)90020-4
35.
Davies
,
T. W.
, and
Worthington
,
D. R. E.
,
1986
, “
Transient Conduction in a Plate Cooled by Free Convection
,”
Int. J. Heat Fluid Flow
,
7
(
4
), pp.
242
246
.10.1016/0142-727X(86)90001-9
36.
Malek
,
M. B. A.
, and
Helal
,
M. M.
,
2006
, “
Semi-Analytical Method for Solving Nonlinear Heat Diffusion Problems in Spherical Medium
,”
J. Comput. Appl. Math.
,
193
(
1
), pp.
10
21
.10.1016/j.cam.2005.04.065
37.
Christou
,
M. A.
,
Sophocleous
,
C.
, and
Christov
,
C. I.
,
2008
, “
Numerical Investigation of the Nonlinear Heat Diffusion Equation With High Nonlinearity on the Boundary
,”
Appl. Math. Comput.
,
201
(
1–2
), pp.
729
738
.10.1016/j.amc.2008.01.011
38.
Liao
,
S.
,
Su
,
J.
, and
Chwang
,
A. T.
,
2006
, “
Series Solutions for a Nonlinear Model of Combined Convective and Radiative Cooling of a Spherical Body
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2437
2445
.10.1016/j.ijheatmasstransfer.2006.01.030
39.
Tan
,
Z.
,
Su
,
G.
, and
Su
,
J.
,
2009
, “
Improved Lumped Models for Combined Convective and Radiative Cooling of a Wall
,”
Appl. Therm. Eng.
,
29
(
11–12
), pp.
2439
2443
.10.1016/j.applthermaleng.2008.12.039
40.
Naterer
,
G. F.
, and
Lam
,
C. H.
,
2006
, “
Transient Response of Two-Phase Heat Exchanger With Varying Convection Coefficients
,”
ASME J. Heat Transfer
,
128
(
9
), pp.
953
962
.10.1115/1.2241974
41.
Malek
,
M. B. A.
, and
Helal
,
M. M.
,
2006
, “
Group Method Solution for Solving Nonlinear Heat Diffusion Problems
,”
Appl. Math. Modell.
,
30
(
9
), pp.
930
940
.10.1016/j.apm.2005.06.006
42.
Arıcı
,
M.
,
Campo
,
A.
, and
Macia
,
Y. M.
,
2020
, “
Computation of Spatio-Temporal Temperatures in Simple Bodies With Thermal Radiation Cooling by Means of the Numerical Method of Lines (NMOL)
,”
Int. Commun. Heat Mass Transfer
,
114
, p.
104504
.10.1016/j.icheatmasstransfer.2020.104504
43.
Cengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2014
,
Heat and Mass Transfer: Fundamentals and Applications
,
McGraw-Hill
,
New York
.
44.
Neills
,
G. F.
, and
Klein
,
S. A.
,
2020
,
Introduction to Engineering Heat Transfer
,
Cambridge University Press
,
New York
.
45.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2006
,
Introduction to Heat Transfer
,
Wiley
,
New York
.
46.
Naterer
,
G. F.
,
2018
,
Advanced Heat Transfer
,
CRC Press
,
Boca Raton, FL
.
47.
Biot
,
M. A.
,
1957
, “
New Methods in Heat Flow Analysis With Application to Flight Structures
,”
J. Aeronaut. Sci.
,
24
(
12
), pp.
857
873
.10.2514/8.3992
48.
Haseli
,
Y.
,
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2012
, “
Predicting the Pyrolysis of Single Biomass Particles Based on a Time and Space Integral Method
,”
J. Anal. Appl. Pyrolysis
,
96
, pp.
126
138
.10.1016/j.jaap.2012.03.014
You do not currently have access to this content.