Abstract

This experimental study examines the use of planar laser Rayleigh scattering to measure instantaneous gas temperature distributions at different heights above the surface of an effusion cooled plate. An experimental test rig was used to model combustor conditions with a bulk crossflow temperature of 1500 K. Carbon dioxide was used as coolant at multiple blowing ratios ranging from 1.12 to 11.1. A “temperature-pegging” methodology was used to process Rayleigh light scattering images to create high resolution and accurate temperature images at heights of 2, 2.75, and 3.5 mm above the surface of a prototypical effusion plate. Measured temperature distributions were used to calculate root-mean-square (RMS) distributions, and were also converted to film effectiveness maps based on the upstream crossflow gas and effusion coolant temperatures. It is found that the film cooling region spreads upstream with increasing effusion jet blowing ratio parameter. The RMS deviation of gas temperatures over each measurement plane shows that the RMS fluctuations are low inside and outside the effusion film, but are high near the film edge. At a given height above the effusion panel, the RMS fluctuations decrease in the film region with increasing blowing ratio. Film effectiveness follows similar trends with high film effectiveness region expanding with increasing effusion jet blowing ratios.

References

1.
Padture
,
N. P.
,
2016
, “
Advanced Structural Ceramics in Aerospace Propulsion
,”
Nat. Mater.
,
15
(
8
), pp.
804
809
.10.1038/nmat4687
2.
Metzger
,
D. E.
,
Carper
,
H. J.
, and
Swank
,
L. R.
,
1968
, “
Heat Transfer With Film Cooling Near Nontangential Injection Slots
,”
ASME J. Eng. Gas Turbines Power
,
90
(
2
), pp.
157
162
.10.1115/1.3609155
3.
Renze
,
P.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2009
, “
Large-Eddy Simulation of Interacting Film Cooling Jets
,”
ASME
Paper No GT2009-59164
.10.1115/GT2009-59164
4.
Cerri
,
G.
,
Giovannelli
,
A.
,
Battisti
,
L.
, and
Fedrizzi
,
R.
,
2007
, “
Advances in Effusive Cooling Techniques of Gas Turbines
,”
Appl. Therm. Eng.
,
27
(
4
), pp.
692
698
.10.1016/j.applthermaleng.2006.10.012
5.
Wassell
,
A. B.
, and
Bhangu
,
J. K.
,
1980
, “
The Development and Application of Improved Combustor Wall Cooling Techniques
,”
ASME
Paper No. V01AT01A066.10.1115/V01AT01A066
6.
Gustafsson
,
K. M. B.
, and
Johansson
,
T. G.
,
2001
, “
An Experimental Study of Surface Temperature Distribution on Effusion-Cooled Plates
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
308
316
.10.1115/1.1364496
7.
Cho
,
H. H.
, and
Goldstein
,
R. J.
,
1995
, “
Heat (Mass) Transfer and Film Cooling Effectiveness With Injection Through Discrete Holes: Part II—on the Exposed Surface
,”
ASME J. Turbomach.
,
117
(
3
), pp.
451
460
.10.1115/1.2835681
8.
Shrager
,
A. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2019
, “
Effects of Effusion Cooling Pattern Near the Dilution Hole for a Double-Walled Combustor Liner—Part 1: Overall Effectiveness Measurements
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011022
.10.1115/1.4041148
9.
Mayle
,
R. E.
, and
Camarata
,
F. J.
,
1975
, “
Multihole Cooling Film Effectiveness and Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
97
(
4
), pp.
534
538
.10.1115/1.3450424
10.
Scrittore
,
J. J.
,
Thole
,
K. A.
, and
Burd
,
S. W.
,
2007
, “
Investigation of Velocity Profiles for Effusion Cooling of a Combustor Liner
,”
ASME J. Turbomach.
,
129
(
3
), pp.
518
526
.10.1115/1.2720492
11.
Facchini
,
B.
,
Tarchi
,
L.
,
Toni
,
L.
, and
Ceccherini
,
A.
,
2010
, “
Adiabatic and Overall Effectiveness Measurements of an Effusion Cooling Array for Turbine Endwall Application
,”
ASME J. Turbomach.
,
132
(
4
), p.
041008
.10.1115/1.3213555
12.
Andreini
,
A.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Tarchi
,
L.
,
Coutandin
,
D.
,
Peschiulli
,
A.
, and
Taddei
,
S.
,
2012
, “
Density Ratio Effects on the Cooling Performances of a Combustor Liner Cooled by a Combined Slot/Effusion System
,”
ASME
Paper No. GT2012-68263.10.1115/GT2012-68263
13.
Papell
,
S.
,
1960
,
Effect on Faseous Film Cooling of Coolant Injection Through Angled Slots and Normal Holes
,
U.S. National Aeronautics and Space Administration
,
Washington, DC
.
14.
Choe
,
H.
,
Kays
,
W.
, and
Moffat
,
R.
,
1976
,
Turbulent Boundary Layer on a Full-Coverage Film-Cooled Surface: An Experimental Heat Transfer Study With Normal Injection
,
U.S. National Aeronautics and Space Administration
,
Washington, DC
.
15.
Miller
,
K.
, and
Crawford
,
M.
,
1984
, “
Numerical Simulation of Single, Double, and Multiple Row Film Cooling Effectiveness and Heat Transfer
,”
ASME
Paper No. 84-GT-112.https://watermark.silverchair.com/v004t09a008-84-gt-112.pdf? token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAABAowggQGBgkqhkiG9w0BBwagggP3MIID8wIBADCCAwGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMwRZa95RsWLcoWrf8AgEQgIIDvTfJ1DpTV2muxAWFB5-YSuxDLO7sIzWp3YCuBgqVGhFo-PxEJg_O4psOP Z6pYM4dQd_iZf4CgnpKBFotqFqB_agT QekPLYaoRRzQORk5hAX4MrGTycLX6zb3sVq9nrrIuvFtl5CNtN6hlZhPI7-72J7Ftrj931svyrepsVMi10y5PErhZz160_7Yjsps0AJGpBJfrEKYanKh4072OdSKZ-vgqd6AxwNsKthN4AUzw5afNE3-3oakYXJMNstDpakLNfXPca_b0yW5EMfWTOM6yj1OeQGL8vlHUM9BKgCk3YpDCkSmPnr5ahXHmdABsNrUABDA39HcK8wrkK1DiYvJOlha8XXXZLxdj5lGHIY2QjeeFvjffCxTSMcEct5dYpXeZ1H7m6lpqnN7-bEY8J147xuum9clwIh7kIMxkNbeG7En6B00-wqq4MhNkXmc03Epw9BLQXsvs82LMFBxlYixtdlakHeYQwDv4eWN0egZPzeF1THCIWumAUOb8eeu_dytPJ3PfD3VIAGsHgwed-T3pLjta606zX_pS3SVBJxWQHFv_nXyNlaH6F4xv0DgyDzLcyCNOqpXYOGeZ7vcvdeqXxjPc8CtMUaHSaaUNpNeK333y_v1g1sFaxMG496rB9MnxRU5-S8w-9iPDb6AWChwxtORqlVEBZz_oCrehyxXlVEVk9SG7yJ9GfDO6jRObvRpUIBM5xmFUCHvHpy1aXyAP9o_GwWMXxIo1taWaCrqn2qFvmrMz06EA262lhGPf6HazBbkMlYCjbMSARdWgaui1Drr00VhSTWGn7ewE08NYOgRgAnj93BRCZZkXSbSQl55SJnnkeAYCsaj_YKPglut6e1Rc1mzxSygBtwoe6AKgTinW2fbAN9SFaXcmiLrcHh1saPiNc6lxwwSUC7fAUHp5tFuJGu8ZsXTitleAsLIWqV_qEj6385CHQa6WoavAV6TkfYCVhZ0r9vV1INxWpc_wDfoZslnX2ykTZEbnUlQZDKGKkxlS4bxbTMMgaSJyerOq2CrQpvFcAgthdMZFyO912FDHGG8MDWj5uxBhe4WwfF3rebXT6884GbUx8VD0zyaEpDeSVUYG5mX0zb6wJoehV_Mzkd3M9O_x6rLW8na1F9hdBgbE20VvFPtqRa6y3wgrmVRsICrZi-EI1l4Fn8t27PvlKq0TQ
16.
Liu
,
Y.
,
Jiang
,
P.
, and
Wang
,
Y.
,
2008
, “
Flow and Heat Transfer Characteristics of Two Effused Cooling Models: Transpiration Cooling and Full Coverage Film Cooling
,”
Proceedings of 2nd International Symposium on Jet Propulsion and Power Engineering
, Vol.
2
, Beijing, China, pp.
615
622
.
17.
Bohn
,
D.
, and
Krewinkel
,
R.
,
2009
, “
Numerical Study on Inner Hole Shaping of Full Coverage Cooled Multi-Layer Plates
,”
Front. Energy Power Eng. China
,
3
(
4
), pp.
406
413
.10.1007/s11708-009-0041-x
18.
Andreini
,
A.
,
Ceccherini
,
A.
,
Facchini
,
B.
,
Tarchi
,
L.
, and
Toni
,
L.
,
2009
, “
Hole Spacing Effect on Adiabatic Effectiveness of Effusion Cooling Arrays for Turbine Endwall Application
,”
Proceedings of 8th European Turbomachinery Conference
, Graz, Austria, pp.
553
567
.https://www.researchgate.net/publication/286345436_Hole_spacing_effect_on_adiabatic_effectiveness_of_effusion_cooling_arrays_for_turbine_endwall_application_Experimental_and_numerical_analysis
19.
Hu
,
Y.
, and
Ji
,
H.
,
2004
, “
Numerical Study of the Effect of Blowing Angles on Cooling Effectiveness of an Effusion Cooling
,”
ASME
Paper No. GT2004-54043.10.1115/GT2004-54043
20.
Fric
,
T. F.
,
Campbell
,
R. P.
, and
Rettig
,
M. G.
,
1997
, “
Quantitative Visualization of Full-Coverage Discrete-Hole Film Cooling
,”
ASME
Paper No. V003T09A064.10.1115/V003T09A064
21.
McGhee
,
S.
,
1999
,
Thermal Imaging Camera for Effusion Cooling Research
,
Queens University
,
Kingston, Ontario, Canada
.
22.
Wernet
,
M. P.
,
Georgiadis
,
N. J.
,
Locke
,
R.
,
Thurman
,
D.
, and
Poinsatte
,
P.
,
2020
, “
PIV and Rotational Raman-Based Temperature Measurements for CFD Validation of a Perforated Plate Cooling Flow: Part I
,”
AIAA
Paper No. 2020-1230.10.2514/6.2020-1230
23.
Greifenstein
,
M.
, and
Dreizler
,
A.
,
2021
, “
Influence of Effusion Cooling Air on the Thermochemical State of Combustion in a Pressurized Model Single Sector Gas Turbine Combustor
,”
Combust. Flame
,
226
, pp.
455
466
.10.1016/j.combustflame.2020.12.031
24.
Straußwald
,
M.
,
Abram
,
C.
,
Sander
,
T.
,
Beyrau
,
F.
, and
Pfitzner
,
M.
,
2021
, “
Time-Resolved Temperature and Velocity Field Measurements in Gas Turbine Film Cooling Flows With Mainstream Turbulence
,”
Exp. Fluids
,
62
(
1
), p. 3.10.1007/s00348-020-03087-2
25.
Miles
,
R. B.
,
Lempert
,
W.
, and
Forkey
,
J.
,
2001
, “
Laser Rayleigh Scattering
,”
Meas. Sci. Technol.
,
12
(
5
), pp.
R33
R51
.10.1088/0957-0233/12/5/201
26.
Long
,
D. A.
,
Duncan
,
M. D.
,
Reintjes
,
J.
,
Manuccia
,
T. J.
,
Raman
,
T.
,
Spettroscopia
,
L.
,
Domenici
,
F.
, and
Fasolato
,
C.
,
2002
,
The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules
,
Wiley & Sons
,
West Sussex, UK
.
27.
Sutton
,
J. A.
, and
Driscoll
,
J. F.
,
2004
, “
Rayleigh Scattering Cross Sections of Combustion Species at 266, 355, and 532 nm for Thermometry Applications
,”
Opt. Lett.
,
29
(
22
), p.
2620
.10.1364/OL.29.002620
28.
Dayton
,
J. W.
,
Poettgen
,
B. K.
,
Linevitch
,
K.
, and
Cetegen
,
B. M.
,
2019
, “
Non-Isothermal Mixing Characteristics in the Extreme Near-Field of a Turbulent Jet in Hot Crossflow
,”
Phys. Fluids
,
31
(
12
), p.
125104
.10.1063/1.5127283
You do not currently have access to this content.