Abstract

In this work, a tube with internal helical fins is analyzed and optimized from an entropy generation point of view. Helical fins, in addition to providing heat transfer enhancements, have the potential to level the temperature of the tube under nonuniform circumferential heating. In this work, the geometric parameters of internal helical fins are optimized under two different entropy-based formulations. Specifically, the optimal design solution obtained through the minimization of total entropy is compared with the solutions from the multiobjective optimization of the thermal and viscous entropy contributions when considered as two separate objectives. The latter quantities being associated with heat transfer and pressure drops, it is shown that, from a design optimization point of view, it is important to separate both entropies which are conflicting objectives.

References

1.
Maradiya
,
C.
,
Vadher
,
J.
, and
Agarwal
,
R.
,
2018
, “
The Heat Transfer Enhancement Techniques and Their Thermal Performance Factor
,”
Beni-Suef Univ. J. Basic Appl. Sci.
,
7
(
1
), pp.
1
21
.10.1016/j.bjbas.2017.10.001
2.
Siddique
,
M.
,
Khaled
,
A.-R.
,
Abdulhafiz
,
N.
, and
Boukhary
,
A.
,
2010
, “
Recent Advances in Heat Transfer Enhancements: A Review Report
,”
Int. J. Chem. Eng.
,
2010
, pp.
1
28
.10.1155/2010/106461
3.
Kraus
,
A. D.
,
Aziz
,
A.
,
Welty
,
J.
, and
Sekulic
,
D.
,
2001
, “
Extended Surface Heat Transfer
,”
ASME Appl. Mech. Rev.
,
54
(
5
), p.
B92
.10.1115/1.1399680
4.
He
,
Y.-L.
,
Wang
,
K.
,
Qiu
,
Y.
,
Du
,
B.-C.
,
Liang
,
Q.
, and
Du
,
S.
,
2019
, “
Review of the Solar Flux Distribution in Concentrated Solar Power: Non-Uniform Features, Challenges, and Solutions
,”
Appl. Therm. Eng.
,
149
, pp.
448
474
.10.1016/j.applthermaleng.2018.12.006
5.
Zdaniuk
,
G. J.
,
Chamra
,
L. M.
, and
Mago
,
P. J.
,
2008
, “
Experimental Determination of Heat Transfer and Friction in Helically-Finned Tubes
,”
Exp. Therm. Fluid Sci.
,
32
(
3
), pp.
761
775
.10.1016/j.expthermflusci.2007.09.006
6.
Withers
,
J. G.
,
1980
, “
Tube-Side Heat Transfer and Pressure Drop for Tubes Having Helical Internal Ridging With Turbulent/Transitional Flow of Single-Phase Fluid. Part 2. multiple-Helix Ridging
,”
Heat Transfer Eng.
,
2
(
2
), pp.
43
50
.10.1080/01457638008962755
7.
Cheng
,
L.
, and
Chen
,
T.
,
2006
, “
Study of Single Phase Flow Heat Transfer and Friction Pressure Drop in a Spiral Internally Ribbed Tube
,”
Chem. Eng. Tech.
,
29
(
5
), pp.
588
595
.10.1002/ceat.200600014
8.
Webb
,
R.
,
Narayanamurthy
,
R.
, and
Thors
,
P.
,
2000
, “
Heat Transfer and Friction Characteristics of Internal Helical-Rib Roughness
,”
ASME J. Heat Transfer-Trans. ASME
,
122
(
1
), pp.
134
142
.10.1115/1.521444
9.
Ravigururajan
,
T.
, and
Bergles
,
A.
,
1994
, “
Visualization of Flow Phenomena Near Enhanced Surfaces
,”
ASME J. Heat Transfer-Trans. ASME
,
116
(
1
), pp.
54
57
.10.1115/1.2910883
10.
Li
,
H.
,
Ye
,
K.
,
Tan
,
Y.
, and
Deng
,
S.
,
1982
, “
Investigation on Tube-Side Flow Visualization, Friction Factors and Heat Transfer Characteristics of Helical-Ridging Tubes
,”
In Proceedings of the International Heat Transfer Conference,
Munich, Germany, Sept. 6–10, pp.
75
80
.10.1615/IHTC7.1500
11.
Kim
,
J.-H.
,
Jansen
,
K. E.
, and
Jensen
,
M. K.
,
2004
, “
Simulation of Three-Dimensional Incompressible Turbulent Flow Inside Tubes With Helical Fins
,”
Numer. Heat Transfer, Part B
,
46
(
3
), pp.
195
221
.10.1080/10407790490449499
12.
Huang
,
Z.
,
Yu
,
G.
,
Li
,
Z.
, and
Tao
,
W.
,
2015
, “
Numerical Study on Heat Transfer Enhancement in a Receiver Tube of Parabolic Trough Solar Collector With Dimples, Protrusions and Helical Fins
,”
Energy Procedia
,
69
, pp.
1306
1316
.10.1016/j.egypro.2015.03.149
13.
Sheikholeslami
,
M.
, and
Ganji
,
D.
,
2016
, “
Heat Transfer Enhancement in an Air to Water Heat Exchanger With Discontinuous Helical Turbulators: Experimental and Numerical Studies
,”
Energy
,
116
, pp.
341
352
.10.1016/j.energy.2016.09.120
14.
Wang
,
W.
,
Zhang
,
Y.
,
Liu
,
J.
,
Wu
,
Z.
,
Li
,
B.
, and
Sundén
,
B.
,
2018
, “
Entropy Generation Analysis of Fully-Developed Turbulent Heat Transfer Flow in Inward Helically Corrugated Tubes
,”
Numer. Heat Transfer, Part A
,
73
(
11
), pp.
788
805
.10.1080/10407782.2018.1459137
15.
Adeyinka
,
O.
, and
Naterer
,
G.
,
2004
, “
Modeling of Entropy Production in Turbulent Flows
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
893
899
.10.1115/1.1845551
16.
Kock
,
F.
, and
Herwig
,
H.
,
2005
, “
Entropy Production Calculation for Turbulent Shear Flows and Their Implementation in Cfd Codes
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
672
680
.10.1016/j.ijheatfluidflow.2005.03.005
17.
Herwig
,
H.
, and
Kock
,
F.
,
2006
, “
Direct and Indirect Methods of Calculating Entropy Generation Rates in Turbulent Convective Heat Transfer Problems
,”
Heat Mass Transfer
,
43
(
3
), pp.
207
215
.10.1007/s00231-006-0086-x
18.
Naterer
,
G.
, and
Camberos
,
J.
,
2003
, “
Entropy and the Second Law Fluid Flow and Heat Transfer Simulation
,”
J. Thermophys. Heat Transfer
,
17
(
3
), pp.
360
371
.10.2514/2.6777
19.
Sciubba
,
E.
,
1997
, “
Calculating Entropy With CFD
,”
Mech. Eng.
,
119
(
10
), pp.
86
89
.https://link.gale.com/apps/doc/A20095472/AONE?u=tel_oweb&sid=googleScholar&xid=2415955f
20.
Rashidi
,
M. M.
,
Nasiri
,
M.
,
Shadloo
,
M. S.
, and
Yang
,
Z.
,
2017
, “
Entropy Generation in a Circular Tube Heat Exchanger Using Nanofluids: Effects of Different Modeling Approaches
,”
Heat Transfer Eng.
,
38
(
9
), pp.
853
866
.10.1080/01457632.2016.1211916
21.
Bhatti
,
M. M.
,
Abbas
,
T.
,
Rashidi
,
M. M.
,
Ali
,
M. E.-S.
, and
Yang
,
Z.
,
2016
, “
Entropy Generation on MHD Eyring–Powell Nanofluid Through a Permeable Stretching Surface
,”
Entropy
,
18
(
6
), p.
224
.10.3390/e18060224
22.
Chen
,
L.
,
Xia
,
S.
, and
Sun
,
F.
,
2018
, “
Entropy Generation Minimization for Isothermal Crystallization Processes With a Generalized Mass Diffusion Law
,”
Int. J. Heat Mass Transfer
,
116
, pp.
1
8
.10.1016/j.ijheatmasstransfer.2017.09.001
23.
Gkaragkounis
,
K.
,
Papoutsis-Kiachagias
,
E.
, and
Giannakoglou
,
K.
,
2018
, “
The Continuous Adjoint Method for Shape Optimization in Conjugate Heat Transfer Problems With Turbulent Incompressible Flows
,”
Appl. Therm. Eng.
,
140
, pp.
351
362
.10.1016/j.applthermaleng.2018.05.054
24.
Kambampati
,
S.
,
Gray
,
J. S.
, and
Kim
,
H. A.
,
2021
, “
Level Set Topology Optimization of Load Carrying Battery Packs
,”
Int. J. Heat Mass Transfer
,
177
, p.
121570
.10.1016/j.ijheatmasstransfer.2021.121570
25.
Mekki
,
B. S.
,
Langer
,
J.
, and
Lynch
,
S.
,
2021
, “
Genetic Algorithm Based Topology Optimization of Heat Exchanger Fins Used in Aerospace Applications
,”
Int. J. Heat Mass Transfer
,
170
, p.
121002
.10.1016/j.ijheatmasstransfer.2021.121002
26.
Li
,
J.
,
Jin
,
R.
, and
Hang
,
Z. Y.
,
2018
, “
Integration of Physically-Based and Data-Driven Approaches for Thermal Field Prediction in Additive Manufacturing
,”
Mater. Des.
,
139
, pp.
473
485
.10.1016/j.matdes.2017.11.028
27.
Zhang
,
W.
,
Liang
,
Z.
,
Wu
,
W.
,
Ling
,
G.
, and
Ma
,
R.
,
2021
, “
Design and Optimization of a Hybrid Battery Thermal Management System for Electric Vehicle Based on Surrogate Model
,”
Int. J. Heat Mass Transfer
,
174
, p.
121318
.10.1016/j.ijheatmasstransfer.2021.121318
28.
Smith
,
R.
, and
Dutta
,
S.
,
2021
, “
Conjugate Thermal Optimization With Unsupervised Machine Learning
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
5
), p.
052901
.10.1115/1.4049842
29.
Cai
,
S.
,
Wang
,
Z.
,
Wang
,
S.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2021
, “
Physics-Informed Neural Networks for Heat Transfer Problems
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
6
), p.
060801
.10.1115/1.4050542
30.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
31.
ANSYS Academic Research Fluent, Theory Guide, Release 19.3
,
ANSYS Inc.
, Canonsburg, PA.
32.
Bejan
,
A.
,
2013
,
Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes
,
CRC Press
,
Boca Raton, FL
.
33.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
101
(
4
), pp.
718
725
.10.1115/1.3451063
34.
Anderson
,
J. D.
, and
Wendt
,
J.
,
1995
,
Computational fluid dynamics.
McGraw-Hill
,
New York
.
35.
Cressie
,
N.
,
1990
, “
The Origins of Kriging
,”
Math. Geol.
,
22
(
3
), pp.
239
252
.10.1007/BF00889887
36.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2005
,
Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning
,
MIT Press
, Boston,
MA
.
37.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: Nsga-ii
,”
IEEE Trans. Evolution. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
You do not currently have access to this content.