Abstract

While numerous applied studies have successfully demonstrated the feasibility of unsteady cooling solutions, a consensus has yet to be reached on the local instantaneous conditions that result in heat transfer enhancement. This work aims to experimentally validate a recent analytical solution (on a local time-dependent basis) for the common flow condition of a fully developed incompressible pulsating flow in a uniformly heated vessel. The experimental setup is found to approximate the ideal constant heat flux boundary condition well, especially for the decoupled unsteady scenario where the amplitude of the most significant secondary contributions (capacitance and lateral conduction) amounts to 1.2% and 0.2% of the generated heat flux, respectively. Overall, the experimental measurements for temperature and heat flux oscillations are found to coincide well with a recent analytical solution to the energy equation by the authors. Furthermore, local time-dependent heat flux enhancements and degradations are observed to be qualitatively similar to those of wall shear stress from a previous study, suggesting that the thermal performance is indeed influenced by hydrodynamic behavior.

References

1.
Jeffers
,
N.
,
Stafford
,
J.
,
Nolan
,
K.
,
Donnelly
,
B.
,
Enright
,
R.
,
Punch
,
J.
,
Waddell
,
A.
,
Erlich
,
L.
,
O'Connor
,
J.
,
Sexton
,
A.
,
Blythman
,
R.
, and
Hernon
,
D.
,
2014
, “
Microfluidic Cooling of Photonic Integrated Circuits (PICs)
,”
Fourth European Conference on Microfluidics
, Limerick, Ireland, Dec.
10
12
.https://www.belllabs.com/institute/publications/itd-14-55446t/
2.
Persoons
,
T.
,
Saenen
,
T.
,
Van Oevelen
,
T.
, and
Baelmans
,
M.
,
2012
, “
Effect of Flow Pulsation on the Heat Transfer Performance of a Minichannel Heat Sink
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
9
), p. 091702.10.1115/1.4006485
3.
Alimohammadi
,
S.
,
Murray
,
D. B.
, and
Persoons
,
T.
,
2015
, “
On the Numerical–Experimental Analysis and Scaling of Convective Heat Transfer to Pulsating Impinging Jets
,”
Int. J. Therm. Sci.
,
98
, pp.
296
311
.10.1016/j.ijthermalsci.2015.07.022
4.
Keil
,
R. H.
, and
Baird
,
M. H. I.
,
1971
, “
Enhancement of Heat Transfer by Flow Pulsation
,”
Ind. Eng. Chem. Process Des. Dev.
,
10
(
4
), pp.
473
478
.10.1021/i260040a008
5.
Walsh
,
T. E.
,
Yang
,
K.
,
Nee
,
V.
, and
Liao
,
Q.
,
1993
, “
Forced Convection Cooling in Microelectronic Cabinets Via Oscillatory Flow Techniques
,”
Experimental Heat Transfer, Fluid Mechanics and Thermodynamics 1993
,
Elsevier
, Amsterdam, The Netherlands, pp.
641
648
.10.1016/0894-1777(93)90160-K
6.
Kurzweg
,
U. H.
, and
Zhao
,
L.
,
1984
, “
Heat Transfer by High-Frequency Oscillations: A New Hydrodynamic Technique for Achieving Large Effective Thermal Conductivities
,”
Phys. Fluids
,
27
(
11
), pp.
2624
2627
.10.1063/1.864563
7.
Blythman
,
R.
,
Alimohammadi
,
S.
,
Persoons
,
T.
,
Jeffers
,
N.
, and
Murray
,
D. B.
,
2018
, “
Parametric Analysis of Laminar Pulsating Flow in a Rectangular Channel
,”
Heat Mass Transfer
,
54
(
8
), pp.
2177
2186
.10.1007/s00231-017-2196-z
8.
Blythman
,
R.
,
Persoons
,
T.
,
Jeffers
,
N.
, and
Murray
,
D. B.
,
2016
, “
Effect of Oscillation Frequency on Wall Shear Stress and Pressure Drop in a Rectangular Channel for Heat Transfer Applications
,”
J. Phys. Conf. Ser.
,
745
, p.
032044
.10.1088/1742-6596/745/3/032044
9.
Blythman
,
R.
,
Persoons
,
T.
,
Jeffers
,
N.
,
Nolan
,
K. P.
, and
Murray
,
D. B.
,
2017
, “
Localised Dynamics of Laminar Pulsatile Flow in a Rectangular Channel
,”
Int. J. Heat Fluid Flow
,
66
, pp.
8
17
.10.1016/j.ijheatfluidflow.2017.05.006
10.
Blythman
,
R.
,
Jeffers
,
N.
,
Persoons
,
T.
, and
Murray
,
D. B.
,
2016
, “
Localized and Time-Resolved Velocity Measurements of Pulsatile Flow in a Rectangular Channel
,”
18th International Conference on Fluid Mechanics and Thermodynamics
, Rio de Janeiro, Brazil, Feb.
1
2
.10.5281/zenodo.1338814
11.
Blythman
,
R.
,
Persoons
,
T.
,
Jeffers
,
N.
, and
Murray
,
D. B.
,
2019
, “
Heat Transfer of Laminar Pulsating Flow in a Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
128
, pp.
279
289
.10.1016/j.ijheatmasstransfer.2018.08.109
12.
Mamoru
,
O.
, and
Akira
,
K.
,
1991
, “
Lumped-Parameter Modeling of Heat Transfer Enhanced by Sinusoidal Motion of Fluid
,”
Int. J. Heat Mass Transfer
,
34
(
12
), pp.
3083
3095
.10.1016/0017-9310(91)90078-S
13.
Shi
,
L.
,
Mao
,
X.
, and
Jaworski
,
A. J.
,
2010
, “
Application of Planar Laser-Induced Fluorescence Measurement Techniques to Study the Heat Transfer Characteristics of Parallel-Plate Heat Exchangers in Thermoacoustic Devices
,”
Meas. Sci. Technol.
,
21
(
11
), p.
115405
.10.1088/0957-0233/21/11/115405
14.
Zhao
,
T. S.
, and
Cheng
,
P.
,
1996
, “
Oscillatory Heat Transfer in a Pipe Subjected to a Laminar Reciprocating Flow
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
592
597
.10.1115/1.2822673
15.
Gupta
,
S. K.
,
Patel
,
T. R. D.
, and
Ackerberg
,
R. C.
,
1982
, “
Wall Heat/Mass Transfer in Pulsatile Flow
,”
Chem. Eng. Sci.
,
37
(
12
), pp.
1727
1739
.10.1016/0009-2509(82)80045-6
16.
Blythman
,
R.
,
Jeffers
,
N.
,
Persoons
,
T.
, and
Murray
,
D. B.
,
2017
, “
Wall Temperature of Laminar Pulsating Flow in a Channel
,”
Ninth World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics
, Iguazu Falls, Brazil, June
11
15
.https://www.researchgate.net/publication/329013445_Wall_temperature_of_laminar_pulsating_flow_in_a_channel
17.
Kurzweg
,
U. H.
,
1985
, “
Enhanced Heat Conduction in Oscillating Viscous Flows Within Parallel-Plate Channels
,”
J. Fluid Mech.
,
156
, pp.
291
300
.10.1017/S0022112085002105
18.
Blythman
,
R.
,
2017
, “
Hydrodynamics and Heat Transfer of Laminar Pulsating Flow in a Rectangular Channel
,” Ph.D. thesis,
Trinity College Dublin
.
19.
Meola
,
C.
, and
Carlomagno
,
G. M.
,
2004
, “
Recent Advances in the Use of Infrared Thermography
,”
Meas. Sci. Technol.
,
15
(
9
), p.
R27
.10.1088/0957-0233/15/9/R01
20.
Donoghue
,
D. B.
,
2014
, “
Bubble Impingement and the Mechanisms of Heat Transfer Enhancement
,” Ph.D. thesis,
Trinity College Dublin
.
21.
Raghu
,
O.
, and
Philip
,
J.
,
2006
, “
Thermal Properties of Paint Coatings on Different Backings Using a Scanning Photo Acoustic Technique
,”
Meas. Sci. Technol.
,
17
(
11
), p.
2945
.10.1088/0957-0233/17/11/012
22.
Kieruj
,
P.
,
Przestacki
,
D.
, and
Chwalczuk
,
T.
,
2016
, “
Determination of Emissivity Coefficient of Heat-Resistant Super Alloys and Cemented Carbide
,”
Arch. Mech. Technol. Mater.
,
36
(
1
), pp.
30
34
.10.1515/amtm-2016-0006
23.
Ochs
,
M.
,
Horbach
,
T.
,
Schulz
,
A.
,
Koch
,
R.
, and
Bauer
,
H. J.
,
2009
, “
A Novel Calibration Method for an Infrared Thermography System Applied to Heat Transfer Experiments
,”
Meas. Sci. Technol.
,
20
(
7
), p.
075103
.10.1088/0957-0233/20/7/075103
24.
Incropera
,
F. P.
,
Lavine
,
A. S.
,
Bergman
,
T. L.
, and
DeWitt
,
D. P.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, Hoboken, NJ.
25.
Stafford
,
J.
,
Walsh
,
E.
, and
Egan
,
V.
,
2009
, “
Characterizing Convective Heat Transfer Using Infrared Thermography and the Heated-Thin-Foil Technique
,”
Meas. Sci. Technol.
,
20
(
10
), p.
105401
.10.1088/0957-0233/20/10/105401
26.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2012
,
Convective Heat and Mass Transfer
,
Tata McGraw-Hill Education
, New York.
27.
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Hetsroni
,
G.
,
2001
, “
Effect of Constant Heat Flux Boundary Condition on Wall Temperature Fluctuations
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
2
), pp.
213
218
.10.1115/1.1345886
28.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
,
Wiley
, Hoboken, NJ.
29.
Zhang
,
J. G.
, and
Kurzeg
,
U. H.
,
1991
, “
Numerical Simulation of Time-Dependent Heat Transfer in Oscillating Pipe Flow
,”
J. Thermophys. Heat Transfer
,
5
(
3
), pp.
401
406
.10.2514/3.277
30.
Spiga
,
M.
, and
Morini
,
G. L.
,
1996
, “
Nusselt Numbers in Laminar Flow for H2 Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
39
(
6
), pp.
1165
1174
.10.1016/0017-9310(95)00205-7
31.
Siegel
,
R.
, and
Savino
,
J. M.
,
1965
, “
An Analytical Solution of the Effect of Peripheral Wall Conduction on Laminar Forced Convection in Rectangular Channels
,”
ASME J. Heat Transfer-Trans. ASME
,
87
(
1
), pp.
59
66
.10.1115/1.3689053
32.
Savino
,
J. M.
, and
Siegel
,
R.
,
1965
, “
Extension of an Analysis of Peripheral Wall Conduction Effects for Laminar Forced Convection in Thin-Walled Rectangular Channels
,” Lewis Research Center, National Aeronautics and Space Administration, Cleveland, OH, Report No. N65-25597.
33.
O'Reilly-Meehan
,
R.
,
Williams
,
N. P.
,
Donnelly
,
B.
,
Persoons
,
T.
,
Nolan
,
K.
, and
Murray
,
D. B.
,
2018
, “
Forced Convection in the Wakes of Impacting and Sliding Bubbles
,”
Heat Mass Transfer
,
54
(
8
), pp.
2255
2265
.10.1007/s00231-017-2165-6
34.
Gibbons
,
M. J.
, and
Robinson
,
A. J.
,
2017
, “
Heat Transfer Characteristics of Single Cone-Jet Electrosprays
,”
Int. J. Heat Mass Transfer
,
113
, pp.
70
83
.10.1016/j.ijheatmasstransfer.2017.04.119
35.
Durst
,
F.
,
Ray
,
S.
,
Ünsal
,
B.
, and
Bayoumi
,
O. A.
,
2005
, “
The Development Lengths of Laminar Pipe and Channel Flows
,”
ASME J. Fluids Eng.
,
127
(
6
), pp.
1154
1160
.10.1115/1.2063088
36.
Spiga
,
M.
, and
Morini
,
G. L.
,
1998
, “
The Developing Nusselt Numbers for Slug Flow in Rectangular Ducts
,”
Int. J. Heat Mass Transfer
,
41
(
18
), pp.
2799
2807
.10.1016/S0017-9310(97)00352-9
37.
Zhao
,
T.
, and
Cheng
,
P.
,
1995
, “
A Numerical Solution of Laminar Forced Convection in a Heated Pipe Subjected to a Reciprocating Flow
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
3011
3022
.10.1016/0017-9310(95)00017-4
38.
Sert
,
C.
, and
Beskok
,
A.
,
2003
, “
Numerical Simulation of Reciprocating Flow Forced Convection in Two-Dimensional Channels
,”
ASME J. Heat Transfer-Trans. ASME
,
125
(
3
), pp.
403
412
.10.1115/1.1565092
You do not currently have access to this content.