Abstract

The dry handling of bottom ash from coal-fired power plants has become more and more important in recent years due to a lack of water availability at the location of power plants or for environmental reasons. Hence, it is crucial that a sufficient cooling of the bottom ash can be ensured by the dry cooling air. In this work, a numerical model for the assessment of heat transfer processes in dry ash conveyors is developed and implemented via the software wolframmathematica. The model uses a newly introduced representative geometric quantity for ash particle geometry. In addition to the ash, cooling air is considered as an own phase for which a temperature solution is obtained. A numerical example, considering geometrical and operational data of an existing facility, shows that the main heat transfer between the ash and the cooling air takes place in the ash hopper, where convective heat transfer from ash to cooling air outweighs the effects from coke combustion and radiation from the boiler outlet area. The convective heat transfer in the ash hopper predominantly depends on the geometrical appearance, i.e., size and shape, of the particles, the grain density, as well as on the falling time/velocity. Conservatism of the calculation approach is indicated based on comparison of computed temperatures with measured data and literature values. The derived model can be used in future designs and projections of dry ash handling systems.

References

1.
Ramme
,
B. W.
,
Lingle
,
J. W.
, and
Naik
,
T. R.
,
1998
, “
Coal Combustion Products Utilization in Wisconsin—An Environmental Approach
,”
Proceedings of the CANMET/ACI International Symposium on Sustainable Development of the Cement and Concrete Industry
, Ottawa, ON, Canada, Oct. 21–23, pp. 349–383.
2.
Ghgafoori
,
N.
, and
Cai
,
Y.
,
1998
, “
Laboratory-Made Roller Compacted Concretes Containing Dry Bottom Ash: Part I—Mechanical Properties
,”
ACI Mater. J.
,
95
(
2
), pp.
121
130
.
3.
Ghgafoori
,
N.
, and
Cai
,
Y.
,
1998
, “
Laboratory-Made Roller Compacted Concretes Containing Dry Bottom Ash: Part II—Long Term Durability
,”
ACI Mater. J.
,
95
(
3
), pp.
244
251
.
4.
Sorensen
,
G. L.
, and
Sarkar
,
S. L.
,
1998
, “
High Volume Coal-Ash Brick Production Technology Using State-of-the-Art Extrusion Process
,”
Proceedings of the CANMET/ACI International Symposium on Sustainable Development of the Cement and Concrete Industry
, Ottawa, ON, Canada, Oct. 21–23, pp.
227
243
.
5.
Cheriaf
,
M.
,
Rocha
,
J. C.
, and
Péra
,
J.
,
1999
, “
Pozzolanic Properties of Pulverized Coal Combustion Bottom Ash
,”
Cem. Concr. Res.
,
29
(
9
), pp.
1387
1391
.10.1016/S0008-8846(99)00098-8
6.
Modern Power Systems,
2007
, “
Bottom Ash Handling: Why the Outlook Is Dry
,” accessed Mar. 15, 2021, https://www.modernpowersystems.com/features/featurebottom-ash-handling-why-the-outlook-is-dry/
7.
Singh
,
D.
,
Croiset
,
E.
,
Douglas
,
P. L.
, and
Douglas
,
M. A.
,
2003
, “
Techno-Economic Study of CO2 Capture From an Existing Coal-Fired Plant: MEA Scrubbing Vs. O2/CO2 Recycle Combustion
,”
Energy Convers. Manage.
,
44
(
19
), pp.
3073
3091
.10.1016/S0196-8904(03)00040-2
8.
Stadler
,
H.
,
Beggel
,
F.
,
Habermehl
,
M.
,
Persigehl
,
B.
,
Kneer
,
R.
,
Modigell
,
M.
, and
Jeschke
,
P.
,
2011
, “
Oxyfuel Coal Combustion by Efficient Integration of Oxygen Transport Membranes
,”
Int. J. Greenhouse Gas Control
,
5
(
1
), pp.
7
15
.10.1016/j.ijggc.2010.03.004
9.
Senneca
,
O.
,
Salatino
,
P.
, and
Ricci
,
D.
,
2013
, “
Development of a Dry Bottom Ash Extraction/Afterburning System From Pulverized Fuel Co-Fired Utility Boilers
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
2855
2863
.10.1016/j.proci.2012.09.003
10.
Li
,
S.
,
Marshall
,
J. S.
,
Liu
,
G.
, and
Yao
,
Q.
,
2011
, “
Adhesive Particulate Flow: The Discrete-Element Method and Its Application in Energy and Environmental Engineering
,”
Prog. Energy Combust. Sci.
,
37
(
6
), pp.
633
668
.10.1016/j.pecs.2011.02.001
11.
Ganser
,
G. H.
,
1993
, “
A Rational Approach to Drag Prediction of Spherical and Non-Spherical Particles
,”
Powder Technol.
,
77
(
2
), pp.
143
152
.10.1016/0032-5910(93)80051-B
12.
Cui
,
H.
, and
Grace
,
J. R.
,
2007
, “
Fluidization of Biomass Particles: A Review of Experimental Multiphase Flow Aspects
,”
Chem. Eng. Sci.
,
62
(
1–2
), pp.
45
55
.10.1016/j.ces.2006.08.006
13.
Concha
,
F.
,
2014
,
Solid-Liquid Separation in the Mining Industry
,
Springer International Publishing
, Basel,
Switzerland
.
14.
Schlünder
,
E. U.
, and
Tsotsas
,
E.
,
1988
,
Wärmeübertragung in Festbetten, durchmischten Schüttgütern und Wirbelschichten
,
Georg Thieme Verlag
,
Stuttgart, Germany/New York
.
15.
Zbogar
,
A.
,
Frandsen
,
F. J.
,
Jensen
,
P. A.
, and
Glarborg
,
P.
,
2005
, “
Heat Transfer in Ash Deposits: A Modelling Tool-Box
,”
Prog. Energy Combust. Sci.
,
31
(
5–6
), pp.
371
421
.10.1016/j.pecs.2005.08.002
16.
VDI
,
Gesellschaft
,
2010
,
VDI Heat Atlas
,
Springer-Verlag
,
Berlin
.
17.
EPRI,
2009
, Coal Ash: Characteristics, Management and Environmental Issues,
Electric Power Research Institute
,
Palo Alto
,
CA
.https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/oira_2050/2050_meeting_101609-2.pdf
18.
Wadell
,
H.
,
1932
, “
Volume, Shape and Roundness of Rock Particles
,”
J. Geol.
,
40
(
5
), pp.
443
445
.10.1086/623964
19.
Koekemoer
,
A.
, and
Luckos
,
A.
,
2015
, “
Effect of Material Type and Particle Size Distribution on Pressure Drop in Packed Beds of Large Particles: Extending the Ergun Equation
,”
Fuel
,
158
, pp.
232
238
.10.1016/j.fuel.2015.05.036
20.
Chandel
,
S.
,
Singh
,
S. N.
, and
Seshadri
,
V.
,
2009
, “
Deposition Characteristics of Coal Ash Slurries at Higher Concentrations
,”
Adv. Powder Technol.
,
20
(
4
), pp.
383
389
.10.1016/j.apt.2009.06.004
21.
U.S. Department of Transportation—Federal Highway Administration
,
2016
, “
User Guidelines for Waste and Byproduct Materials in Pavement Construction
,” U.S. Department of Transportation—Federal Highway Administration, Washington, DC, accessed Mar. 15, 2021, https://www.fhwa.dot.gov/publications/research/infrastructure/structures/97148/toc.cfm
22.
ISO
,
2004
, “
Representation of Results of Particle Size Analysis—Part 1: Graphical Representation
,” ISO, Geneva, Switzerland, Standard No. DIN ISO
9276
1
.
23.
Stieß
,
M.
,
2009
,
Mechanische Verfahrenstechnik-Partikeltechnologie 1
,
Springer-Verlag
,
Berlin
.
24.
Eisermann
,
W.
,
Johnson
,
P.
, and
Conger
,
W. L.
,
1980
, “
Estimating Themodynamic Properties of Coal, Char, Tar and Ash
,”
Fuel Process. Technol.
,
3
(
1
), pp.
39
53
.10.1016/0378-3820(80)90022-3
25.
Merrick
,
D.
,
1983
, “
Mathematical Models of the Thermal Decomposition of Coal: 2. Specific Heats and Heats of Reaction
,”
Fuel
,
62
(
5
), pp.
540
546
.10.1016/0016-2361(83)90223-5
26.
Hartman
,
M.
,
Trnka
,
O.
, and
Svoboda
,
K.
,
2000
, “
Fluidization Characteristics of Dolomite and Calcined Dolomite Particles
,”
Chem. Eng. Sci.
,
55
(
24
), pp.
6269
6274
.10.1016/S0009-2509(00)00409-7
27.
Hoffmann
,
K.
,
Krenn
,
E.
, and
Stanker
,
G.
,
2005
,
Fördertechnik: Bauelemente, ihre Konstruktion und Berechnung. Band 1
,
Oldenbourg Verlag
,
Wien, Austria/München, Germany
.
28.
Effenberger
,
H.
,
2000
,
Dampferzeugung
,
Springer-Verlag
,
Berlin
.
29.
Reichenberger
,
H. P.
,
Mocker
,
M.
,
Quicker
,
P.
, and
Faulstich
,
M.
,
2007
, “
Rückstände aus verschiedenen Verbrennungsanlagen
,” 12, Fachtagung Thermische Abfallbehandlung, München, Germany, Mar. 6–7, pp.
231
252
.
30.
Rezaei
,
H. R.
,
Gupta
,
R. P.
,
Bryant
,
G. W.
,
Hart
,
J. T.
,
Liu
,
G. S.
,
Bailey
,
C. W.
,
Wall
,
T. F.
,
Miyamae
,
S.
,
Makino
,
K.
, and
Endo
,
Y.
,
2000
, “
Thermal Conductivity of Coal Ash and Slags and Models Used
,”
Fuel
,
79
(
13
), pp.
1697
1710
.10.1016/S0016-2361(00)00033-8
31.
Baehr
,
H. D.
, and
Stephan
,
K.
,
1994
,
Wärme- und Stoffübertragung
,
Springer-Verlag
,
Berlin
.
32.
Bonefacic
,
I.
,
Frankovic
,
B.
, and
Kazagic
,
A.
,
2015
, “
Cylindrical Particle Modelling in Pulverized Coal and Biomass Co-Firing Process
,”
Appl. Therm. Eng.
,
78
, pp.
74
81
.10.1016/j.applthermaleng.2014.12.047
33.
Kümmel
,
W.
,
2007
,
Technische Strömungsmechanik
,
Teubner Verlag
,
Wiesbaden, Germany
.
34.
Cerbe
,
G.
, and
Wilhelms
,
G.
,
2005
,
Technische Thermodynamik
,
Carl Hanser Verlag
,
München, Germany/Wien, Austria
.
35.
Black
,
S.
, and
Bielunis
,
D.
,
2013
, “
Challenges When Converting Coal-Fired Boilers to Natural Gas
,” Council of Industrial Boilers (
CIBO
) Industrial Emissions Control Technology Conference and Natural Gas Conversion Workshop, Portland, OR, Aug.
5
8
.https://www.babcockpower.com/wp-content/uploads/2018/02/challenges-when-converting-coalfired-boilers-to-natural-gas.pdf
36.
Field
,
M. A.
,
Gill
,
D. W.
,
Morgan
,
B. B.
, and
Hawksley
,
P. G. W.
,
1967
,
Combustion of Pulverized Coal
,
Bcura
,
Leatherland, UK
.
37.
Epple
,
B.
,
Leithner
,
R.
,
Linzer
,
W.
, and
Walter
,
H.
,
2012
,
Simulation von Kraftwerken und Feuerungen
,
Springer-Verlag
,
Wien, Austria
.
38.
Smoot
,
L. D.
, and
Smith
,
P. J.
,
1985
,
Coal Combustion and Gasification
,
Plenum Press
,
New York
.
39.
Wolfram
,
S.
,
2015
,
An Elementary Introduction to the Wolfram Language
,
Wolfram Media
.
40.
Krueger
,
B.
,
Wirtz
,
S.
, and
Scherer
,
V.
,
2015
, “
Measurement of Drag Coefficients of Non-Spherical Particles With a Camera-Based Method
,”
Powder Technol.
,
278
, pp.
157
170
.10.1016/j.powtec.2015.03.024
41.
Tomeczek
,
J.
, and
Palugniok
,
H.
,
1996
, “
Specific Heat Capacity and Enthalpy of Coal Pyrolysis at Elevated Temperatures
,”
Fuel
,
75
(
9
), pp.
1089
1093
.10.1016/0016-2361(96)00067-1
42.
Lesniak
,
B.
,
Slupik
,
L.
, and
Jakubina
,
G.
,
2013
, “
The Determination of the Specific Heat Capacity of Coal Based on Literature Data
,”
CHEMIK
,
67
(
6
), pp.
560
571
.http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-b7ba884e-dc05-4880-b23f-443b1c16554e/c/6_13__Lesniak__GB.PDF
43.
Bhattacharya
,
S. P.
,
2004
, “
Spectral Emittance of Particulate Ash-Like Deposits: Theoretical Predictions Compared to Experimental Measurement
,”
ASME J. Heat Transfer-Trans. ASME
,
126
(
2
), pp.
286
289
.10.1115/1.1666885
44.
Grosshandler
,
W. L.
, and
Monteiro
,
S. L. P.
,
1982
, “
Attenuation of Thermal Radiation by Pulverized Coal and Char
,”
ASME J. Heat Transfer-Trans. ASME
,
104
(
4
), pp.
587
593
.10.1115/1.3245172
45.
Johansson
,
R.
,
Gronarz
,
T.
, and
Kneer
,
R.
,
2017
, “
Influence of Index of Refraction and Particle Size Distribution on Radiative Heat Transfer in a Pulverized Coal Combustion Furnace
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
4
), p.
042702
.10.1115/1.4035205
46.
Liu
,
D.
,
Duan
,
Y.-Y.
,
Yang
,
Z.
, and
Yu
,
H.-T.
,
2014
, “
Theoretical Predictions of Spectral Emissivity for Coal Ash Deposits
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
7
), p.
072701
.10.1115/1.4026907
47.
Vollmari
,
K.
,
Oschmann
,
T.
,
Wirtz
,
S.
, and
Kruggel-Emden
,
H.
,
2015
, “
Pressure Drop Investigations in Packings of Arbitrary Shaped Particles
,”
Powder Technol.
,
271
, pp.
109
124
.10.1016/j.powtec.2014.11.001
You do not currently have access to this content.