Abstract

The combination of microstructured surface and microchannel flow boiling is expected to solve the thermal management problems of high-heat-flux devices. In this study, the experimental investigation of subcooled flow boiling in a high aspect ratio, one-sided heating rectangular microchannel was conducted with de-ionized water as the working fluid. ZnO microrods were synthesized on the titanium surface to be used as the heated surface compared with the bare titanium surface. A facile image tool is utilized to process the flow patterns photographed by a high-speed camera, which is analyzed with the heat transfer characteristics. The flow pattern of isolated bubbly flow reveals the large number of nucleation sites formed on the microrod surface but the heat transfer performance deteriorates with increasing mass flux because of the smaller bubble area and weaker nucleation. With increasing heat flux, the flow pattern changes from isolated bubbly flow to alternating bubbly/slug flow and alternating slug/annular flow. The latter flow pattern is confirmed to bring a higher heat transfer coefficient due to the larger area of thin-film evaporation. Compared with the bare surface, a higher heat transfer coefficient is achieved on the ZnO microrod surface for up to 37% due to the more nucleate sites and strengthened convective evaporation. Therefore, this surface might be suitable for heat dissipation in the watercraft or aerospace industry considering the low density, strong intensity, and corrosion resistance of titanium.

References

1.
Mudawar
,
I.
,
2011
, “
Two-Phase Microchannel Heat Sinks: Theory, Applications, and Limitations
,”
ASME J. Electron. Packag.
,
133
(
4
), p.
041002
.10.1115/1.4005300
2.
Karayiannis
,
T. G.
, and
Mahmoud
,
M. M.
,
2017
, “
Flow Boiling in Microchannels: Fundamentals and Applications
,”
Appl. Therm. Eng.
,
115
, pp.
1372
1397
.10.1016/j.applthermaleng.2016.08.063
3.
Bergles
,
A. E.
, and
Manglik
,
R. M.
,
2013
, “
Current Progress and New Developments in Enhanced Heat and Mass Transfer
,”
J. Enhanced Heat Transfer
,
20
(
1
), pp.
1
15
.10.1615/JEnhHeatTransf.2013006989
4.
Kim
,
D. E.
,
Yu
,
D. I.
,
Jerng
,
D. W.
,
Kim
,
M. H.
, and
Ahn
,
H. S.
,
2015
, “
Review of Boiling Heat Transfer Enhancement on Micro/Nanostructured Surfaces
,”
Exp. Therm. Fluid Sci.
,
66
, pp.
173
196
.10.1016/j.expthermflusci.2015.03.023
5.
Liang
,
G.
, and
Mudawar
,
I.
,
2020
, “
Review of Channel Flow Boiling Enhancement by Surface Modification, and Instability Suppression Schemes
,”
Int. J. Heat Mass Transfer
,
146
, p.
118864
.10.1016/j.ijheatmasstransfer.2019.118864
6.
Lin
,
Y.
,
Luo
,
Y.
,
Li
,
J.
, and
Li
,
W.
,
2021
, “
Heat Transfer, Pressure Drop and Flow Patterns of Flow Boiling on Heterogeneous Wetting Surface in a Vertical Narrow Microchannel
,”
Int. J. Heat Mass Transfer
,
172
, p.
121158
.10.1016/j.ijheatmasstransfer.2021.121158
7.
Heng
,
Y.
,
Luo
,
J.
,
Mo
,
D.
,
Fu
,
Y.
,
,
S.
, and
Wang
,
Y.
,
2020
, “
Porous Surfaces With Structural Gradient: Enhancing Boiling Heat Transfer and Its Application in Phase-Change Devices
,”
Chin. Sci. Bull.
,
65
(
17
), pp.
1638
1652
.10.1360/TB-2019-0380
8.
Lin
,
Y.
,
Luo
,
Y.
,
Wang
,
E. N.
,
Li
,
W.
, and
Minkowycz
,
W. J.
,
2021
, “
Enhancement of Flow Boiling Heat Transfer in Microchannel Using Micro-Fin and Micro-Cavity Surfaces
,”
Int. J. Heat Mass Transfer
,
179
, p.
121739
.10.1016/j.ijheatmasstransfer.2021.121739
9.
Lin
,
Y.
,
Li
,
J.
,
Sun
,
J.
,
Li
,
W.
, and
Cao
,
Y.
,
2021
, “
Onset of Boiling, Heat Transfer, and Flow Patterns of Flow Boiling on the Superhydrophobic Porous Copper Surface in a Microchannel
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
8
), p.
081602
.10.1115/1.4051324
10.
Li
,
J.
,
Lin
,
Y.
,
Li
,
W.
, and
Zhou
,
K.
,
2020
, “
Local Heat Transfer of Saturated Flow Boiling in Vertical Narrow Microchannel
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
7
), p.
071601
.10.1115/1.4047144
11.
Zhou
,
K.
,
Coyle
,
C.
,
Li
,
J.
,
Buongiorno
,
J.
, and
Li
,
W.
,
2017
, “
Flow Boiling in Vertical Narrow Microchannels of Different Surface Wettability Characteristics
,”
Int. J. Heat Mass Transfer
,
109
, pp.
103
114
.10.1016/j.ijheatmasstransfer.2017.01.111
12.
Li
,
W.
,
Li
,
J.
,
Feng
,
Z.
,
Zhou
,
K.
, and
Wu
,
Z.
,
2017
, “
Local Heat Transfer in Subcooled Flow Boiling in a Vertical Mini-Gap Channel
,”
Int. J. Heat Mass Transfer
,
110
, pp.
796
804
.10.1016/j.ijheatmasstransfer.2017.03.086
13.
Li
,
W.
,
Lin
,
Y.
,
Zhou
,
K.
,
Li
,
J.
, and
Zhu
,
J.
,
2019
, “
Local Heat Transfer of Saturated Flow Boiling in Vertical Narrow Microchannel
,”
Int. J. Therm. Sci.
,
145
, p.
105996
.10.1016/j.ijthermalsci.2019.105996
14.
Kline
,
S. J.
, and
Mcclintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
15.
Kandlikar
,
S. G.
,
2004
, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
ASME J. Heat Transfer-Trans. ASME
,
126
(
1
), pp.
8
16
.10.1115/1.1643090
16.
Mukherjee
,
A.
,
2009
, “
Contribution of Thin-Film Evaporation During Flow Boiling Inside Microchannels
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2025
2035
.10.1016/j.ijthermalsci.2009.03.006
You do not currently have access to this content.