Abstract

A parametric analysis has been conducted for the phase change material (PCM)-air cooled battery pack. The system is composed of 26650 lithium-ion LiFePO4 batteries enclosed by PCM. A one-dimensional thermal model for the PCM domain is developed using the enthalpy method. The finite volume method is employed to solve the energy equation for both cell and PCM domain. The developed computational algorithm has been validated as a result of the simulations for the same conditions with the literature. The discharge process of the batteries has been investigated for 2C, 3C, and 5C rates. Thermal analyses have been performed for passive (natural convection) and active cooling (forced convection). It is aimed to keep the temperature of the battery cell under critical levels. A parametric investigation for crucial parameters like PCM layer thickness, the thermal conductivity of the PCM, arrangement of the batteries has been performed. Simulations have been conducted for the constant air velocity and the pumping power. Thanks to the constant pumping power analysis, thermally best-performing configuration have been sought by eliminating the hydrodynamic effect.

References

1.
Deng
,
Y.
,
Feng
,
C.
,
E
,
J.
,
Zhu
,
H.
,
Chen
,
J.
,
Wen
,
M.
, and
Yin
,
H.
,
2018
, “
Effects of Different Coolants and Cooling Strategies on the Cooling Performance of the Power Lithium Ion Battery System: A Review
,”
Appl. Therm. Eng.
,
142
, pp.
10
29
.10.1016/j.applthermaleng.2018.06.043
2.
Yan
,
J.
,
Wang
,
Q.
,
Li
,
K.
, and
Sun
,
J.
,
2016
, “
Numerical Study on the Thermal Performance of a Composite Board in Battery Thermal Management System
,”
Appl. Therm. Eng.
,
106
, pp.
131
140
.10.1016/j.applthermaleng.2016.05.187
3.
Hémery
,
C. V.
,
Pra
,
F.
,
Robin
,
J. F.
, and
Marty
,
P.
,
2014
, “
Experimental Performances of a Battery Thermal Management System Using a Phase Change Material
,”
J. Power Sources
,
270
, pp.
349
358
.10.1016/j.jpowsour.2014.07.147
4.
Mohammadian
,
S. K.
, and
Zhang
,
Y.
,
2016
, “
Temperature Uniformity Improvement of an Air-Cooled High-Power Lithium-Ion Battery Using Metal and Nonmetal Foams
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
11
), p. 114502.10.1115/1.4033811
5.
Ianniciello
,
L.
,
Biwolé
,
P. H.
, and
Achard
,
P.
,
2018
, “
Electric Vehicles Batteries Thermal Management Systems Employing Phase Change Materials
,”
J. Power Sources
,
378
, pp.
383
403
.10.1016/j.jpowsour.2017.12.071
6.
Ling
,
Z.
,
Wang
,
F.
,
Fang
,
X.
,
Gao
,
X.
, and
Zhang
,
Z.
,
2015
, “
A Hybrid Thermal Management System for Lithium Ion Batteries Combining Phase Change Materials With Forced-Air Cooling
,”
Appl. Energy
,
148
, pp.
403
409
.10.1016/j.apenergy.2015.03.080
7.
Zhao
,
J.
,
Rao
,
Z.
,
Huo
,
Y.
,
Liu
,
X.
, and
Li
,
Y.
,
2015
, “
Thermal Management of Cylindrical Power Battery Module for Extending the Life of New Energy Electric Vehicles
,”
Appl. Therm. Eng.
,
85
, pp.
33
43
.10.1016/j.applthermaleng.2015.04.012
8.
Mahamud
,
R.
, and
Park
,
C.
,
2011
, “
Reciprocating Air Flow for Li-Ion Battery Thermal Management to Improve Temperature Uniformity
,”
J. Power Sources
,
196
(
13
), pp.
5685
5696
.10.1016/j.jpowsour.2011.02.076
9.
Yang
,
N.
,
Zhang
,
X.
,
Li
,
G.
, and
Hua
,
D.
,
2015
, “
Assessment of the Forced Air-Cooling Performance for Cylindrical Lithium-Ion Battery Packs: A Comparative Analysis Between Aligned and Staggered Cell Arrangements
,”
Appl. Therm. Eng.
,
80
, pp.
55
65
.10.1016/j.applthermaleng.2015.01.049
10.
Jiang
,
G.
,
Huang
,
J.
,
Fu
,
Y.
,
Cao
,
M.
, and
Liu
,
M.
,
2016
, “
Thermal Optimization of Composite Phase Change Material/Expanded Graphite for Li-Ion Battery Thermal Management
,”
Appl. Therm. Eng.
,
108
, pp.
1119
1125
.10.1016/j.applthermaleng.2016.07.197
11.
Lazrak
,
A.
,
Fourmigué
,
J. F.
, and
Robin
,
J. F.
,
2018
, “
An Innovative Practical Battery Thermal Management System Based on Phase Change Materials: Numerical and Experimental Investigations
,”
Appl. Therm. Eng.
,
128
, pp.
20
32
.10.1016/j.applthermaleng.2017.08.172
12.
Rao
,
Z.
,
Qian
,
Z.
,
Kuang
,
Y.
, and
Li
,
Y.
,
2017
, “
Thermal Performance of Liquid Cooling Based Thermal Management System for Cylindrical Lithium-Ion Battery Module With Variable Contact Surface
,”
Appl. Therm. Eng.
,
123
, pp.
1514
1522
.10.1016/j.applthermaleng.2017.06.059
13.
Xu
,
T.
,
Ling
,
Z.
,
Zhang
,
Z.
,
Gao
,
X.
,
Fang
,
X.
,
Chen
,
J.
, and
Wang
,
S.
,
2014
, “
Experimental and Numerical Investigation of the Application of Phase Change Materials in a Simulative Power Batteries Thermal Management System
,”
Appl. Energy
,
121
, pp.
104
113
.http://scihub.tw/10.1016/j.apenergy.2014.01.075
14.
Jiang
,
G.
,
Huang
,
J.
,
Liu
,
M.
, and
Cao
,
M.
,
2017
, “
Experiment and Simulation of Thermal Management for a Tube-Shell Li-Ion Battery Pack With Composite Phase Change Material
,”
Appl. Therm. Eng.
,
120
, pp.
1
9
.10.1016/j.applthermaleng.2017.03.107
15.
Alexiades
,
V.
, and
Solomon
,
A. D.
,
1993
, “
Mathematical Modeling of Melting and Freezing Processes
,”
J. Fluid Mech.
,
251
(
1
), p.
336
.
16.
Žukauskas
,
A.
,
1972
, “
Heat Transfer From Tubes in Crossflow
,”
Adv. Heat Transfer
,
8
(
C
), pp.
93
160
.10.1016/S0065-2717(08)70038-8
17.
Bergman
,
T. L.
,
Lavigne
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
7th ed. Wiley, Hoboken, NJ.
18.
Türkakar
,
G.
,
2021
, “
Design and Optimization of PCM-Air Cold Energy Storage Device to Be Used for Peak Electricity Shaving
,” Isı Bilim. ve Tek. Derg., 41(1), pp. 23–36.
19.
Holman
,
J. P.
,
2009
,
Heat Transfer
, 10th ed.,
McGraw-Hill
,
New York
.
20.
Türkakar
,
G.
, and
Hoş
,
I.
,
2021
, “
Numerical Investigation of the Fins on Thermal Management of Lithium Ion Batteries With Phase Change Materials (in Turkish)
,”
J. Faculty Eng. Architecture Gazi Univ.
(under review).
21.
Wang
,
X.
,
Xie
,
Y.
,
Day
,
R.
,
Wu
,
H.
,
Hu
,
Z.
,
Zhu
,
J.
, and
Wen
,
D.
,
2018
, “
Performance Analysis of a Novel Thermal Management System With Composite Phase Change Material for a Lithium-Ion Battery Pack
,”
Energy
,
156
, pp.
154
168
.10.1016/j.energy.2018.05.104
22.
Khateeb
,
S. A.
,
Amiruddin
,
S.
,
Farid
,
M.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2005
, “
Thermal Management of Li-Ion Battery With Phase Change Material for Electric Scooters: Experimental Validation
,”
J. Power Sources
,
142
(
1–2
), pp.
345
353
.10.1016/j.jpowsour.2004.09.033
23.
Lin
,
C.
,
Xu
,
S.
,
Chang
,
G.
, and
Liu
,
J.
,
2015
, “
Experiment and Simulation of a LiFePO4 Battery Pack With a Passive Thermal Management System Using Composite Phase Change Material and Graphite Sheets
,”
J. Power Sources
,
275
, pp.
742
749
.10.1016/j.jpowsour.2014.11.068
24.
Zhao
,
J.
,
Rao
,
Z.
, and
Li
,
Y.
,
2015
, “
Thermal Performance of Mini-Channel Liquid Cooled Cylinder Based Battery Thermal Management for Cylindrical Lithium-Ion Power Battery
,”
Energy Convers. Manag.
,
103
, pp.
157
165
.10.1016/j.enconman.2015.06.056
25.
Ebadi
,
S.
,
Al-Jethelah
,
M.
,
Tasnim
,
S. H.
, and
Mahmud
,
S.
,
2018
, “
An Investigation of the Melting Process of RT-35 Filled Circular Thermal Energy Storage System
,”
Open Physics
, 16(1), pp.
574
580
.10.1515/phys-2018-0075
26.
RUBITHERM Technologies GmbH
,
2020
, “
RUBITHERM Data Sheet of RT35 Version 09.10.2020
,” RUBITHERM Technologies GmbH, Berlin, Germany, accessed September 26, 2021, https://www.rubitherm.eu/media/products/datasheets/Techdata_-RT35_EN_09102020.PDF
27.
Longeon
,
M.
,
Soupart
,
A.
,
Fourmigué
,
J. F.
,
Bruch
,
A.
, and
Marty
,
P.
,
2013
, “
Experimental and Numerical Study of Annular PCM Storage in the Presence of Natural Convection
,”
Appl. Energy
,
112
, pp.
175
184
.10.1016/j.apenergy.2013.06.007
28.
Yang
,
Z.
, and
Garimella
,
S. V.
,
2010
, “
Melting of Phase Change Materials With Volume Change in Metal Foams
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
6
), p. 062301.10.1115/1.4000747
29.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2005
, “
A Two-Temperature Model for Solid-Liquid Phase Change in Metal Foams
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
9
), pp.
995
1004
.10.1115/1.2010494
30.
Ghalambaz
,
M.
, and
Zhang
,
J.
,
2020
, “
Conjugate Solid-Liquid Phase Change Heat Transfer in Heatsink Filled With Phase Change Material-Metal Foam
,”
Int. J. Heat Mass Transfer
,
146
, p.
118832
.10.1016/j.ijheatmasstransfer.2019.118832
31.
Iasiello
,
M.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
, and
Naso
,
V.
,
2021
, “
The Effects of Variable Porosity and Cell Size on the Thermal Performance of Functionally-Graded Foams
,”
Int. J. Therm. Sci.
,
160
, p.
106696
.10.1016/j.ijthermalsci.2020.106696
32.
Iasiello
,
M.
,
Mameli
,
M.
,
Filippeschi
,
S.
, and
Bianco
,
N.
,
2021
, “
Metal Foam/PCM Melting Evolution Analysis: Orientation and Morphology Effects
,”
Appl. Therm. Eng.
,
187
, p.
116572
.10.1016/j.applthermaleng.2021.116572
33.
Yang
,
X.
,
Wei
,
P.
,
Liu
,
G.
,
Bai
,
Q.
, and
He
,
Y. L.
,
2020
, “
Performance Evaluation on the Gradient Design of Pore Parameters for Metal Foam and Pin Fin-Metal Foam Hybrid Structure
,”
Appl. Therm. Eng.
,
175
, p.
115416
.10.1016/j.applthermaleng.2020.115416
You do not currently have access to this content.