Abstract

A nonhomogeneous model is used to simulate convective transport in nanofluids. The model is a thermodynamically consistent version of the celebrated Buongiorno model. We study two situations in detail: flow through a pipe that is heated periodically in time at one lateral wall and a lid-driven cavity with a triangular heat source placed within. Both studies reveal the mechanisms of enhanced heat transfer by nanofluids through thermophoresis: the temperature gradient at the wall leads to a reduced concentration of nanoparticles. This reduces the concentration-dependent viscosity of the suspension close to the boundary, which in turn leads to a stronger convective transport.

References

1.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3639
3653
.10.1016/S0017-9310(03)00156-X
2.
Choi
,
S. U. S.
, and
Eastman
,
J.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME International Mechanical Engineering Congress and Exhibition
, San Francisco, CA, Nov. 12–17.https://www.osti.gov/biblio/196525-enhancing-thermal-conductivity-fluids-nanoparticles
3.
Sarit
,
K. D.
,
Choi
,
S. U.
,
Yu
,
W.
, and
Pradeep
,
T.
,
2008
,
Nanofluids: Science and Technology
,
Wiley-Interscience
, Hoboken, NJ.
4.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
3
), pp.
240
250
.10.1115/1.2150834
5.
Saidur
,
R.
,
Leong
,
K. Y.
, and
Mohammed
,
H. A.
,
2011
, “
A Review on Applications and Challenges of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1646
1668
.10.1016/j.rser.2010.11.035
6.
Göktepe
,
S.
,
Atalik
,
K.
, and
Erturk
,
H.
,
2014
, “
Comparison of Single and Two-Phase Models for Nanofluid Convection at the Entrance of a Uniformly Heated Tube
,”
Int. J. Therm. Sci.
,
80
, pp.
83
92
.10.1016/j.ijthermalsci.2014.01.014
7.
Xuan
,
Y.
, and
Roetzel
,
W.
,
2000
, “
Conception for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3701
3707
.10.1016/S0017-9310(99)00369-5
8.
Kalteh
,
M.
,
Abbassi
,
A.
,
Saffar-Avval
,
M.
, and
Harting
,
J.
,
2011
, “
Eulerian-Eulerian Two-Phase Numerical Simulation of Nanofluid Laminar Forced Convection in a Mircochannel
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
107
116
.10.1016/j.ijheatfluidflow.2010.08.001
9.
Bänsch
,
E.
,
2019
, “
A Thermodynamically Consistent Model for Convective Transport in Nanofluids: Existence of Weak Solutions and Fem Computations
,”
J. Math. Anal. Appl.
,
477
(
1
), pp.
41
59
.10.1016/j.jmaa.2019.04.002
10.
Einstein
,
A.
,
1905
, “
Über die von der Molekularkinetischen Theorie der Wärme Geforderte Bewegung von in Ruhenden Flüssigkeiten Suspendierten Teilchen
,”
Ann. Phys.
,
322
(
8
), pp.
549
560
.10.1002/andp.19053220806
11.
McNab
,
G.
, and
Meisen
,
A.
,
1973
, “
Thermophoresis in Liquids
,”
J. Colloid Interface Sci.
,
44
(
2
), pp.
339
346
.10.1016/0021-9797(73)90225-7
12.
Rahman
,
M.
, and
Saghir
,
M.
,
2014
, “
Thermodiffusion or Soret Effect: Historical Review
,”
Int. J. Heat Mass Transfer
,
73
, pp.
693
705
.10.1016/j.ijheatmasstransfer.2014.02.057
13.
Vanaki
,
S. M.
,
Ganesan
,
P.
, and
Mohammed
,
H. A.
,
2016
, “
Numerical Study of Convective Heat Transfer of Nanofluids: A Review
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
1212
1239
.10.1016/j.rser.2015.10.042
14.
Turkyilmazoglu
,
M.
,
2019
, “
Fully Developed Slip Flow in a Concentric Annuli Via Single and Dual Phase Nanofluids Models
,”
Comput. Methods Programs Biomed.
,
179
, p.
104997
.10.1016/j.cmpb.2019.104997
15.
Bänsch
,
E.
,
Faghih-Naini
,
S.
, and
Morin
,
P.
,
2020
, “
Convective Transport in Nanofluids: The Stationary Problem
,”
J. Math. Anal. Appl.
,
489
(
1
), p.
124151
.10.1016/j.jmaa.2020.124151
16.
Bänsch
,
E.
, and
Morin
,
P.
,
2021
, “
Convective Transport in Nanofluids: Regularity of Solutions and Error Estimates for Finite Element Approximations
,”
J. Math. Fluid Mech.
23(2), article id. 42.10.1007/s00021-020-00554-y
17.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
1960
,
Transport Phenomena
,
Wiley
,
New York
.
18.
Abels
,
H.
,
Garcke
,
H.
, and
Grün
,
G.
,
2012
, “
Thermodynamically Consistent, Frame Indifferent Diffuse Interface Models for Incompressible Two-Phase Flows With Different Densities
,”
Math. Models Methods Appl. Sci.
,
22
(
03
), p.
1150013
.10.1142/S0218202511500138
19.
Çengel
,
Y. A.
,
2009
,
Introduction to Thermodynamics and Heat Transfer
, 2nd ed.,
McGraw-Hill
, New York, Chap.
2
.
20.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
,
1997
,
Handbook of Heat Transfer
,
McGraw-Hill
, New York, Chap.
1
.
21.
Minkowycz
,
W.
,
Sparrow
,
E. M.
, and
Abraham
,
J. P.
,
2013
,
Nanoparticle Heat Transfer and Fluid Flow
, 3rd ed.,
CRC Press
, Boca Raton, FL.
22.
Hassan
,
A.
,
Ramzan
,
N.
,
Umer
,
A.
,
Ahmad
,
A.
, and
Muryam
,
H.
,
2018
, “
Enhancement of Convective Heat Transfer Coefficient of Ethylene Glycol Base Cuprous Oxide (Cu2O) Nanofluids
,”
Heat Mass Transfer
,
54
(
2
), pp.
325
332
.10.1007/s00231-017-2113-5
23.
Davis
,
T. A.
,
2004
, “
Algorithm 832: UMFPACK V4.3—An Unsymmetric-Pattern Multifrontal Method
,”
ACM Trans. Math. Software
,
30
(
2
), pp.
196
199
.10.1145/992200.992206
24.
Bicerano
,
J.
,
Douglas
,
J. F.
, and
Brune
,
D. A.
,
1999
, “
Model for the Viscosity of Particle Dispersions
,”
Polym. Rev.
,
39
(
4
), pp.
561
642
.10.1081/MC-100101428
25.
Kwak
,
K.
, and
Kim
,
C.
,
2005
, “
Viscosity and Thermal Conductivity of Copper Oxide Nanofluid Dispersed in Ethylene Glycol
,”
Korea-Aust. Rheol. J.
,
17
(
2
), pp.
35
40
.https://www.springer.com/journal/13367
26.
Shah
,
R.
,
1975
, “
Thermal Entry Length Solutions for the Circular Tube and Parallel Plates
,”
Third National Heat Mass Transfer Conference
,
Indian Institute of Technology
, Bombay, India, Dec. 11–13, pp.
11
75
.
27.
Zhang
,
Y.
,
Li
,
L.
,
Ma
,
H. B.
, and
Yang
,
M.
,
2009
, “
Effect of Brownian and Thermophoretic Diffusions of Nanoparticles on Nonequilibrium Heat Conduction in a Nanofluid Layer With Periodic Heat Flux
,”
Numer. Heat Transfer, Part A
,
56
(
4
), pp.
325
341
.10.1080/10407780903163876
28.
Gangawane
,
K.
,
2017
, “
Computational Analysis of Mixed Convection Heat Transfer Characteristics in Lid-Driven Cavity Containing Triangular Block With Constant Heat Flux: Effect of Prandtl and Grashof Numbers
,”
Int. J. Heat Mass Transfer
,
105
, pp.
34
57
.10.1016/j.ijheatmasstransfer.2016.09.061
29.
Morshed
,
K. N.
,
Sharif
,
M. A. R.
, and
Islam
,
A. W.
,
2015
, “
Laminar Mixed Convection in a Lid-Driven Square Cavity With Two Isothermally Heated Square Internal Blockages
,”
Chem. Eng. Commun.
,
202
(
9
), pp.
1176
1190
.10.1080/00986445.2014.912634
30.
Kalteh
,
M.
,
Javaherdeh
,
K.
, and
Azarbarzin
,
T.
,
2014
, “
Numerical Solution of Nanofluid Mixed Convection Heat Transfer in a Lid-Driven Square Cavity With a Triangular Heat Source
,”
Powder Technol.
,
253
, pp.
780
788
.10.1016/j.powtec.2013.12.039
31.
Abdallaoui
,
M. E.
,
Hasnaoui
,
M.
, and
Amahmid
,
A.
,
2015
, “
Numerical Simulation of Natural Convection Between a Decentered Triangular Heating Cylinder and a Square Outer Cylinder Filled With a Pure Fluid or a Nanofluid Using the Lattice Boltzmann Method
,”
Powder Technol.
,
277
, pp.
193
205
.10.1016/j.powtec.2015.02.042
You do not currently have access to this content.