Abstract

The fabrication of porous metallic composite coating on the heating surface to improve pool boiling heat transfer (BHT) performance has received significant attention in recent years. In this work, Cu–GNPs nanocomposite coatings, which were prepared on a copper substrate using various current densities through a two-step electrodeposition technique, were used as heating surfaces to study the pool BHT performance of refrigerant R-134a. The surface morphology, elemental composition, thickness, surface roughness, and porosity of prepared Cu–GNPs nanocomposite coatings are studied and presented in detail. All Cu–GNPs nanocomposite coated surfaces exhibited improved boiling performance compared to the plain Cu surface. The heat transfer coefficient (HTC) values for Cu–GNPs nanocomposite coated Cu surfaces prepared at 0.1, 0.2, 0.3, and 0.4 A/cm2 were improved up to 1.48, 1.67, 1.82, and 1.97, respectively, compared with the plain Cu surface. The enhancement in the HTC is mainly associated with the increase in surface roughness, active nucleation site density, and micro/nanoporosity of the heating surface.

References

1.
Dewangan
,
A. K.
,
Kumar
,
A.
, and
Kumar
,
R.
,
2019
, “
Experimental Study of Nucleate Pool Boiling of R-134a and R-410a on a Porous Surface
,”
Heat Transfer Eng.
,
40
(
15
), pp.
1249
1258
.10.1080/01457632.2018.1460922
2.
Ciloglu
,
D.
, and
Bolukbasi
,
A.
,
2015
, “
A Comprehensive Review on Pool Boiling of Nanofluids
,”
Appl. Therm. Eng.
,
84
, pp.
45
63
.10.1016/j.applthermaleng.2015.03.063
3.
Dang
,
C.
,
Jia
,
L.
,
Peng
,
Q.
,
Huang
,
Q.
, and
Zhang
,
X.
,
2018
, “
Experimental and Analytical Study on Nucleate Pool Boiling Heat Transfer of R134a/R245fa Zeotropic Mixtures
,”
Int. J. Heat Mass Transfer
,
119
, pp.
508
522
.10.1016/j.ijheatmasstransfer.2017.11.143
4.
Sur
,
A.
,
Lu
,
Y.
,
Pascente
,
C.
,
Ruchhoeft
,
P.
, and
Liu
,
D.
,
2018
, “
Pool Boiling Heat Transfer Enhancement With Electrowetting
,”
Int. J. Heat Mass Transfer
,
120
, pp.
202
217
.10.1016/j.ijheatmasstransfer.2017.12.029
5.
Bottini
,
J. L.
,
Kumar
,
V.
,
Hammouti
,
S.
,
Ruzic
,
D.
, and
Brooks
,
C. S.
,
2018
, “
Influence of Wettability Due to Laser-Texturing on Critical Heat Flux in Vertical Flow Boiling
,”
Int. J. Heat Mass Transfer
,
127
, pp.
806
817
.10.1016/j.ijheatmasstransfer.2018.06.113
6.
Tang
,
Y.
,
Tang
,
B.
,
Li
,
Q.
,
Qing
,
J.
,
Lu
,
L.
, and
Chen
,
K.
,
2013
, “
Pool-Boiling Enhancement by Novel Metallic Nanoporous Surface
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
194
198
.10.1016/j.expthermflusci.2012.06.008
7.
Sheikholeslami
,
M.
,
Gorji-Bandpy
,
M.
, and
Ganji
,
D. D.
,
2015
, “
Review of Heat Transfer Enhancement Methods: Focus on Passive Methods Using Swirl Flow Devices
,”
Renewable Sustainable Energy Rev.
,
49
, pp.
444
469
.10.1016/j.rser.2015.04.113
8.
Doretti
,
L.
,
Righetti
,
G.
,
Longo
,
G. A.
,
Zilio
,
C.
, and
Mancin
,
S.
,
2020
, “
On the Hysteresis Phenomenon During Flow Boiling Heat Transfer on a Hydrophilic Carbon/Carbon Surface
,”
Int. Commun. Heat Mass Transfer
,
117
, p.
104795
.10.1016/j.icheatmasstransfer.2020.104795
9.
Li
,
C.
, and
Peterson
,
G. P.
,
2007
, “
Parametric Study of Pool Boiling on Horizontal Highly Conductive Microporous Coated Surfaces
,”
Trans. ASME J. Heat Transfer
,
129
(
11
), pp.
1465
1475
.10.1115/1.2759969
10.
Stutz
,
B.
,
Morceli
,
C. H. S.
,
da Silva
,
M. D F.
,
Cioulachtjian
,
S.
, and
Bonjour
,
J.
,
2011
, “
Influence of Nanoparticle Surface Coating on Pool Boiling
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1239
1249
.10.1016/j.expthermflusci.2011.04.011
11.
Leong
,
K. C.
,
Ho
,
J. Y.
, and
Wong
,
K. K.
,
2017
, “
A Critical Review of Pool and Flow Boiling Heat Transfer of Dielectric Fluids on Enhanced Surfaces
,”
Appl. Therm. Eng.
,
112
, pp.
999
1019
.10.1016/j.applthermaleng.2016.10.138
12.
Karunagaran
,
B.
,
Rajendra Kumar
,
R. T.
,
Senthil Kumar
,
V.
,
Mangalaraj
,
D.
,
Narayandass
,
S. K.
, and
Mohan Rao
,
G.
,
2003
, “
Structural Characterization of DC Magnetron-Sputtered TiO2 Thin Films Using XRD and Raman Scattering Studies
,”
Mater. Sci. Semicond. Process.
,
6
(
5–6
), pp.
547
550
.10.1016/j.mssp.2003.05.012
13.
Lee
,
J.
, and
Son
,
G.
,
2015
, “
Numerical Simulation of Liquid Film Formation and Evaporation in Dip Coating
,”
Int. Commun. Heat Mass Transfer
,
68
, pp.
220
227
.10.1016/j.icheatmasstransfer.2015.09.008
14.
Ujereh
,
S.
,
Fisher
,
T.
, and
Mudawar
,
I.
,
2007
, “
Effects of Carbon Nanotube Arrays on Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4023
4038
.10.1016/j.ijheatmasstransfer.2007.01.030
15.
Ray
,
M.
, and
Bhaumik
,
S.
,
2018
, “
Structural Properties of Glancing Angle Deposited Nanostructured Surfaces for Enhanced Boiling Heat Transfer Using Refrigerant R-141b
,”
Int. J. Refrig.
,
88
, pp.
78
90
.10.1016/j.ijrefrig.2017.12.008
16.
Patil
,
C. M.
,
Santhanam
,
K. S. V.
, and
Kandlikar
,
S. G.
,
2014
, “
Development of a Two-Step Electrodeposition Process for Enhancing Pool Boiling
,”
Int. J. Heat Mass Transfer
,
79
, pp.
989
1001
.10.1016/j.ijheatmasstransfer.2014.08.062
17.
Saha
,
B.
,
Das
,
N. S.
, and
Chattopadhyay
,
K. K.
,
2014
, “
Combined Effect of Oxygen Deficient Point Defects and Ni Doping in Radio Frequency Magnetron Sputtering Deposited ZnO Thin Films
,”
Thin Solid Films
,
562
, pp.
37
42
.10.1016/j.tsf.2014.03.038
18.
Ahmad
,
S. W.
,
Lewis
,
J. S.
,
McGlen
,
R. J.
, and
Karayiannis
,
T. G.
,
2014
, “
Pool Boiling on Modified Surfaces Using R-123
,”
Heat Transf. Eng.
,
35
(
16–17
), pp.
1491
1503
.10.1080/01457632.2014.889493
19.
Sobha Jayakrishnan
,
D.
,
2012
, “
Electrodeposition: The Versatile Technique for Nanomaterials
,”
Corrosion Protection and Control Using Nanomaterials
,
Elsevier
, Woodhead Publishing, Cambridge, UK, pp.
86
125
.
20.
El-Genk
,
M. S.
, and
Ali
,
A. F.
,
2010
, “
Enhanced Nucleate Boiling on Copper Micro-Porous Surfaces
,”
Int. J. Multiphase Flow
,
36
(
10
), pp.
780
792
.10.1016/j.ijmultiphaseflow.2010.06.003
21.
Grujicic
,
D.
, and
Pesic
,
B.
,
2002
, “
Electrodeposition of Copper: The Nucleation Mechanisms
,”
Electrochim. Acta
,
47
(
18
), pp.
2901
2912
.10.1016/S0013-4686(02)00161-5
22.
Gupta
,
S. K.
, and
Misra
,
R. D.
,
2019
, “
Effect of Two-Step Electrodeposited Cu–TiO2 Nanocomposite Coating on Pool Boiling Heat Transfer Performance
,”
J. Therm. Anal. Calorim.
,
136
(
4
), pp.
1781
1793
.10.1007/s10973-018-7805-7
23.
Thurber
,
C. R.
,
Ahmad
,
Y. H.
,
Sanders
,
S. F.
,
Al-Shenawa
,
A.
,
D'Souza
,
N.
,
Mohamed
,
A. M. A.
, and
Golden
,
T. D.
,
2016
, “
Electrodeposition of 70-30 Cu–Ni Nanocomposite Coatings for Enhanced Mechanical and Corrosion Properties
,”
Curr. Appl. Phys.
,
16
(
3
), pp.
387
396
.10.1016/j.cap.2015.12.022
24.
Shahil
,
K. M. F.
, and
Balandin
,
A. A.
,
2012
, “
Graphene–Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials
,”
Nano Lett.
,
12
(
2
), pp.
861
867
.10.1021/nl203906r
25.
Gajghate
,
S. S.
,
Barathula
,
S.
,
Das
,
S.
,
Saha
,
B. B.
, and
Bhaumik
,
S.
,
2020
, “
Experimental Investigation and Optimization of Pool Boiling Heat Transfer Enhancement Over Graphene-Coated Copper Surface
,”
J. Therm. Anal. Calorim.
,
140
(
3
), pp.
1393
1411
.10.1007/s10973-019-08740-5
26.
Jun
,
S.
,
Kim
,
J.
,
Son
,
D.
,
Kim
,
H. Y.
, and
You
,
S. M.
,
2016
, “
Enhancement of Pool Boiling Heat Transfer in Water Using Sintered Copper Microporous Coatings
,”
Nucl. Eng. Technol.
,
48
(
4
), pp.
932
940
.10.1016/j.net.2016.02.018
27.
Gupta
,
S. K.
, and
Misra
,
R. D.
,
2019
, “
An Experimental Investigation on Pool Boiling Heat Transfer Enhancement Using Cu-Al2O3 Nano-Composite Coating
,”
Exp. Heat Transfer
,
32
(
2
), pp.
133
158
.10.1080/08916152.2018.1485785
28.
Pingale
,
A. D.
,
Belgamwar
,
S. U.
, and
Rathore
,
J. S.
,
2020
, “
Effect of Graphene Nanoplatelets Addition on the Mechanical, Tribological and Corrosion Properties of Cu–Ni/Gr Nanocomposite Coatings by Electro-Co-Deposition Method
,”
Trans. Indian Inst. Met.
,
73
(
1
), pp.
99
107
.10.1007/s12666-019-01807-9
29.
Pingale
,
A. D.
,
Belgamwar
,
S. U.
, and
Rathore
,
J. S.
,
2020
, “
Synthesis and Characterization of Cu–Ni/Gr Nanocomposite Coatings by Electro-Co-Deposition Method: Effect of Current Density
,”
Bull. Mater. Sci.
,
43
(
1
), p.
66
.10.1007/s12034-019-2031-x
30.
Belgamwar
,
S. U.
,
Pingale
,
A. D.
, and
Nipun Sharma
,
N.
,
2019
, “
Investigation on Electrical Properties of Cu Matrix Composite Reinforced by Multi-Walled Carbon Nanotubes
,”
Mater. Today: Proc.
,
18
, pp.
3201
3208
.10.1016/j.matpr.2019.07.196
31.
Morshed
,
A. K. M. M.
,
Paul
,
T. C.
, and
Khan
,
J.
,
2013
, “
Effect of Cu–Al2O3 Nanocomposite Coating on Flow Boiling Performance of a Microchannel
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
1135
1143
.10.1016/j.applthermaleng.2012.09.047
32.
Schultz
,
R. R.
, and
Cole
,
R.
,
1979
, “
Uncertainty Analysis of Boiling Nucleation
,”
AIChE Symp Ser
,
75
, pp.
32
38
.http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL8070159748
33.
Cooper
,
M. G.
,
1984
, “
Saturation Nucleate Pool Boiling—A Simple Correlation
,”
First U.K. National Conference on Heat Transfer
, University of Leeds, UK, July 3–5,
Elsevier
, pp.
785
793
.
34.
Rohsenow
,
W. M.
,
1952
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
,
74
, pp.
969
976
.http://hdl.handle.net/1721.1/61431
35.
Gorenflo
,
D.
,
1993
,
Pool Boiling, VDI Heat Atlas
,
VDI-Verlag
,
Dusseldorf, Germany
.
36.
Ribatski
,
G.
, and
Jabardo
,
J. M. S.
,
2003
, “
ExperimentalStudy of Nucleate Boiling of Halocarbon Refrigerants on Cylindrical Surfaces
,”
Int. J. Heat Mass Transfer
,
46
(
23
), pp.
4439
4451
.10.1016/S0017-9310(03)00252-7
37.
Stephan
,
K.
, and
Abdelsalam
,
M.
,
1980
, “
Heat-Transfer Correlations for Natural Convection Boiling
,”
Int. J. Heat Mass Transfer
,
23
(
1
), pp.
73
87
.10.1016/0017-9310(80)90140-4
38.
Dewangan
,
A. K.
,
Kumar
,
A.
, and
Kumar
,
R.
,
2017
, “
Pool Boiling of Iso-Butane and Quasi Azeotropic Refrigerant Mixture on Coated Surfaces
,”
Exp. Therm. Fluid Sci.
,
85
, pp.
176
188
.10.1016/j.expthermflusci.2017.02.028
39.
Webb
,
R. L.
,
1981
, “
The Evolution of Enhanced Surface Geometries for Nucleate Boiling
,”
Heat Transf. Eng.
,
2
(
3–4
), pp.
46
69
.10.1080/01457638108962760
40.
Gheitaghy
,
A. M.
,
Saffari
,
H.
, and
Mohebbi
,
M.
,
2016
, “
Investigation Pool Boiling Heat Transfer in U-Shaped Mesochannel With Electrodeposited Porous Coating
,”
Exp. Therm. Fluid Sci.
,
76
, pp.
87
97
.10.1016/j.expthermflusci.2016.03.011
41.
Pialago
,
E. J. T.
,
Kwon
,
O. K.
, and
Park
,
C. W.
,
2013
, “
Nucleate Boiling Heat Transfer of R134a on Cold Sprayed CNT–Cu Composite Coatings
,”
Appl. Therm. Eng.
,
56
(
1–2
), pp.
112
119
.10.1016/j.applthermaleng.2013.03.046
42.
Cao
,
Z.
,
Wu
,
Z.
,
Abbood
,
S.
, and
Sundén
,
B.
,
2019
, “
An Analysis of Pool Boiling Heat Transfer on Nanoparticle-Coated Surfaces
,”
Energy Procedia
,
158
, pp.
5880
5887
.10.1016/j.egypro.2019.01.537
43.
Sezer
,
N.
,
Khan
,
S. A.
, and
Koç
,
M.
,
2019
, “
Amelioration of the Pool Boiling Heat Transfer Performance Via Self-Assembling of 3D Porous Graphene/Carbon Nanotube Hybrid Film Over the Heating Surface
,”
Int. J. Heat Mass Transfer
,
145
, p.
118732
.10.1016/j.ijheatmasstransfer.2019.118732
44.
Ali
,
H. M.
,
Generous
,
M. M.
,
Ahmad
,
F.
, and
Irfan
,
M.
,
2017
, “
Experimental Investigation of Nucleate Pool Boiling Heat Transfer Enhancement of TiO2-Water Based Nanofluids
,”
Appl. Therm. Eng.
,
113
, pp.
1146
1151
.10.1016/j.applthermaleng.2016.11.127
45.
Rajabzadeh Dareh
,
F.
,
Haghshenasfard
,
M.
,
Nasr Esfahany
,
M.
, and
Salimi Jazi
,
H.
,
2018
, “
Experimental Investigation of Time and Repeated Cycles in Nucleate Pool Boiling of Alumina/Water Nanofluid on Polished and Machined Surfaces
,”
Heat Mass Transfer
,
54
(
6
), pp.
1653
1668
.10.1007/s00231-017-2266-2
46.
Ray
,
M.
, and
Bhaumik
,
S.
,
2019
, “
Nucleate Pool Boiling Heat Transfer of Hydro-Fluorocarbon Refrigerant R134a on TiO2 Nanoparticle Coated Copper Heating Surfaces
,”
Heat Transf. Eng.
,
40
(
12
), pp.
997
1006
.10.1080/01457632.2018.1450333
47.
Das
,
S.
,
Saha
,
B.
, and
Bhaumik
,
S.
,
2017
, “
Experimental Study of Nucleate Pool Boiling Heat Transfer of Water by Surface Functionalization With Crystalline TiO2 Nanostructure
,”
Appl. Therm. Eng.
,
113
, pp.
1345
1357
.10.1016/j.applthermaleng.2016.11.135
48.
Song
,
G.
,
Davies
,
P. A.
,
Wen
,
J.
,
Xu
,
G.
, and
Quan
,
Y.
,
2018
, “
Nucleate Pool Boiling Heat Transfer of SES36 Fluid on Nanoporous Surfaces Obtained by Electrophoretic Deposition of Al2O3
,”
Appl. Therm. Eng.
,
141
, pp.
143
152
.10.1016/j.applthermaleng.2017.12.068
49.
Launay
,
S.
,
Fedorov
,
A. G.
,
Joshi
,
Y.
,
Cao
,
A.
, and
Ajayan
,
P. M.
,
2006
, “
Hybrid Micro-Nano Structured Thermal Interfaces for Pool Boiling Heat Transfer Enhancement
,”
Microelectron. J.
,
37
(
11
), pp.
1158
1164
.10.1016/j.mejo.2005.07.016
50.
Ahn
,
H. S.
,
Sinha
,
N.
,
Zhang
,
M.
,
Banerjee
,
D.
,
Fang
,
S.
, and
Baughman
,
R. H.
,
2006
, “
Pool Boiling Experiments on Multiwalled Carbon Nanotube (MWCNT) Forests
,”
ASME J. Heat Transfer
,
128
(
12
), pp.
1335
1342
.10.1115/1.2349511
51.
Jaikumar
,
A.
,
Santhanam
,
K. S. V.
,
Kandlikar
,
S. G.
,
Raya
,
I. B. P.
, and
Raghupathi
,
P.
,
2015
, “
Electrochemical Deposition of Copper on Graphene With High Heat Transfer Coefficient
,”
ECS Transfer
,
66
(
30
), pp.
55
64
.10.1149/06630.0055ecst
52.
Jaikumar
,
A.
,
Kandlikar
,
S. G.
, and
Gupta
,
A.
,
2017
, “
Pool Boiling Enhancement Through Graphene and Graphene Oxide Coatings
,”
Heat Transfer Eng.
,
38
(
14–15
), pp.
1274
1284
.10.1080/01457632.2016.1242959
53.
Joseph
,
A.
,
Mohan
,
S.
,
Sujith Kumar
,
C. S.
,
Mathew
,
A.
,
Thomas
,
S.
,
Vishnu
,
B. R.
, and
Sivapirakasam
,
S. P.
,
2019
, “
An Experimental Investigation on Pool Boiling Heat Transfer Enhancement Using Sol-Gel Derived Nano-CuO Porous Coating
,”
Exp. Therm. Fluid Sci.
,
103
, pp.
37
50
.10.1016/j.expthermflusci.2018.12.033
54.
Ray
,
M.
,
Deb
,
S.
, and
Bhaumik
,
S.
,
2017
, “
Experimental Investigation of Nucleate Pool Boiling Heat Transfer of R134a on TiO2 Coated TF Surface
,”
Mater. Today: Proc.
,
4
(
9
), pp.
10002
10009
.10.1016/j.matpr.2017.06.310
55.
Lee
,
S.
,
Lee
,
J.
,
Hwang
,
H.
,
Yeo
,
T.
,
Lee
,
H.
, and
Choi
,
W.
,
2018
, “
Layer-by-Layer Assembled Carbon Nanotube-Polyethyleneimine Coatings Inside Copper-Sintered Heat Pipes for Enhanced Thermal Performance
,”
Carbon
,
140
, pp.
521
532
.10.1016/j.carbon.2018.08.069
56.
Singh
,
N.
, and
Banerjee
,
D.
,
2014
,
Nanofins
,
Springer
,
New York
.
57.
Kuchibhotla
,
A.
,
Chakraborty
,
S.
, and
Banerjee
,
D.
,
2020
, “
Experimental Validation of Numerical Predictions for ‘Deviant’ Density Enhancement of Protein Emulsions in Oil (Oleo-Nanofluids)
,”
SN Appl. Sci.
,
2
(
9
), p.
1617
.
You do not currently have access to this content.