Abstract

A clear understanding of flow and heat transfer at pore-scale level in microporous media is a topic of concern in microcooling/heating systems. In this work, a multiple-relaxation-time lattice Boltzmann method (LBM) is employed to study flow and heat transfer of gas in microporous media. Curved boundaries are treated using an effective boundary condition, which is formed by combining nonequilibrium extrapolation with counterextrapolation methods. The method also incorporates velocity slip and temperature jump on gas–solid interface. A two-dimensional (2D) porous domain composed of microcylinders, is considered from a representative element volume (REV) for the simulation. Porosity of the domain is variated by altering diameter of microcylinders. Nusselt number is calculated by varying Knudsen number (0.0–0.1), Reynolds number (5–50) and porosity (0.4–0.8). Based on the obtained numerical predictions, a new Nusselt number correlation is proposed for the first time in this work which can accurately predict the heat transfer for slip gas flow in confined porous media.

References

1.
Park
,
S. H.
,
Jo
,
D. H.
,
Cho
,
C. S.
,
Lee
,
K.
,
Kim
,
J. H.
,
Ryu
,
S.
,
Joo
,
C.
,
Kim
,
J. H.
, and
Ryu
,
W.
,
2018
, “
Depthwise-Controlled Scleral Insertion of Microneedles for Drug Delivery to the Back of the Eye
,”
Eur. J. Pharm. Biopharm.
,
133
, pp.
31
41
.10.1016/j.ejpb.2018.09.021
2.
Ghaffari
,
O.
,
Solovitz
,
S. A.
,
Ikhlaq
,
M.
, and
Arik
,
M.
,
2016
, “
An Investigation Into Flow and Heat Transfer of an Ultrasonic Micro-Blower Device for Electronics Cooling Applications
,”
Appl. Therm. Eng.
,
106
, pp.
881
889
.10.1016/j.applthermaleng.2016.06.094
3.
Liu
,
Z.
,
Yao
,
Y.
, and
Wu
,
H.
,
2013
, “
Numerical Modeling for Solid–Liquid Phase Change Phenomena in Porous Media: Shell-and-Tube Type Latent Heat Thermal Energy Storage
,”
Appl. Energy
,
112
, pp.
1222
1232
.10.1016/j.apenergy.2013.02.022
4.
Liu
,
Z.
, and
Wu
,
H.
,
2016
, “
Pore-Scale Study on Flow and Heat Transfer in 3D Reconstructed Porous Media Using Micro-Tomography Images
,”
Appl. Therm. Eng.
,
100
, pp.
602
610
.10.1016/j.applthermaleng.2016.02.057
5.
Kuruneru
,
S. T. W.
,
Sauret
,
E.
,
Saha
,
S. C.
, and
Gu
,
Y.
,
2018
, “
Coupled CFD-DEM Simulation of Oscillatory Particle-Laden Fluid Flow Through a Porous Metal Foam Heat Exchanger: Mitigation of Particulate Fouling
,”
Chem. Eng. Sci.
,
179
, pp.
32
52
.10.1016/j.ces.2018.01.006
6.
Leach
,
T. T.
, and
Cadou
,
C. P.
,
2005
, “
The Role of Structural Heat Exchange and Heat Loss in the Design of Efficient Silicon Micro-Combustors
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2437
2444
.10.1016/j.proci.2004.08.229
7.
Niyazbek
,
M.
,
Talp
,
K.
, and
Kudaikulov
,
A. A.
,
2017
, “
Direct Numerical Simulation of Pore-Scale Unidirectional Plow in Porous Media
,”
IOP Conf. Ser. Earth Environ. Sci.
,
94
, p.
012067
.10.1088/1755-1315/94/1/012067
8.
Liu
,
Z.
,
Zhou
,
J.
, and
Wu
,
H.
,
2018
, “
Non-Isothermal Slip Flow Over Micro Spherical Particle at Low Reynolds Numbers
,”
Chem. Eng. Sci.
,
191
, pp.
19
30
.10.1016/j.ces.2018.06.047
9.
Haruki
,
M.
,
Okumura
,
K.
,
Onishi
,
H.
, and
Tada
,
Y.
,
2019
, “
CFD Simulation Study of the Flow Conditions of Supercritical CO2 in a Tubular Reactor
,”
J. Supercrit. Fluids
,
152
, p.
104541
.10.1016/j.supflu.2019.104541
10.
Nacer
,
M. H.
,
Maharjan
,
D.
,
Ho
,
M. T.
,
Stefanov
,
S.
,
Graur
,
I.
, and
Greiner
,
M.
,
2017
, “
Continuum and Kinetic Simulations of Heat Transfer Trough Rarefied Gas in Annular and Planar Geometries in the Slip Regime
,”
ASME J. Heat Transfer
,
139
(
4
), p.
042002
.10.1115/1.4035172
11.
Yu
,
H.
,
Chen
,
J.
,
Zhu
,
Y.
,
Wang
,
F.
, and
Wu
,
H.
,
2017
, “
Multiscale Transport Mechanism of Shale Gas in Micro/Nano-Pores
,”
Int. J. Heat Mass Transfer
,
111
, pp.
1172
1180
.10.1016/j.ijheatmasstransfer.2017.04.050
12.
Higuera
,
F. J.
,
Succi
,
S.
, and
Benzi
,
R.
,
1989
, “
Lattice Gas Dynamics With Enhanced Collisions
,”
Europhys. Lett. (EPL)
,
9
(
4
), pp.
345
349
.10.1209/0295-5075/9/4/008
13.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
.10.1146/annurev.fluid.30.1.329
14.
Liu
,
Z.
, and
Wu
,
H.
,
2016
, “
Pore-Scale Modeling of Immiscible Two-Phase Flow in Complex Porous Media
,”
Appl. Therm. Eng.
,
93
, pp.
1394
1402
.10.1016/j.applthermaleng.2015.08.099
15.
Liu
,
Z.
, and
Wu
,
H.
,
2016
, “
Numerical Modeling of Liquid–Gas Two-Phase Flow and Heat Transfer in Reconstructed Porous Media at Pore Scale
,”
Int. J. Hydrogen Energy
,
41
(
28
), pp.
12285
12292
.10.1016/j.ijhydene.2016.05.025
16.
Liu
,
Z.
,
Mu
,
Z.
, and
Wu
,
H.
,
2019
, “
Numerical Modeling of Slip Flow and Heat Transfer Over Micro Cylinders With Lattice Boltzmann Method
,”
ASME J. Heat Transfer
,
141
(
4
), p.
042401
.10.1115/1.4042770
17.
Gokaltun
,
S.
, and
Dulikravich
,
G. S.
,
2010
, “
Lattice Boltzmann Computations of Incompressible Laminar Flow and Heat Transfer in a Constricted Channel
,”
Comput. Math. Appl.
,
59
(
7
), pp.
2431
2441
.10.1016/j.camwa.2009.08.045
18.
Dai
,
Q.
, and
Yang
,
L.
,
2013
, “
LBM Numerical Study on Oscillating Flow and Heat Transfer in Porous Media
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
16
25
.10.1016/j.applthermaleng.2013.01.020
19.
Zhao
,
C. Y.
,
Dai
,
L. N.
,
Tang
,
G. H.
,
Qu
,
Z. G.
, and
Li
,
Z. Y.
,
2010
, “
Numerical Study of Natural Convection in Porous Media (Metals) Using Lattice Boltzmann Method (LBM)
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
925
934
.10.1016/j.ijheatfluidflow.2010.06.001
20.
Abbaszadeh
,
M.
,
Salehi
,
A.
, and
Abbassi
,
A.
,
2017
, “
Lattice Boltzmann Simulation of Heat Transfer Enhancement in an Asymmetrically Heated Channel Filled With Random Porous Media
,”
J. Porous Media
,
20
(
2
), pp.
175
191
.10.1615/JPorMedia.v20.i2.60
21.
Shokouhmand
,
H.
, and
Isfahani
,
A. H. M.
,
2011
, “
An Improved Thermal Lattice Boltzmann Model for Rarefied Gas Flows in Wide Range of Knudsen Number
,”
Int. Commun. Heat Mass Transfer
,
38
(
10
), pp.
1463
1469
.10.1016/j.icheatmasstransfer.2011.08.009
22.
Karimipour
,
A.
,
2017
, “
Provide a Suitable Range to Include the Thermal Creeping Effect on Slip Velocity and Temperature Jump of an Air Flow in a Nanochannel by Lattice Boltzmann Method
,”
Phys. E
,
85
, pp.
143
151
.10.1016/j.physe.2016.08.021
23.
Zhang
,
C.
,
Deng
,
Z.
, and
Chen
,
Y.
,
2014
, “
Temperature Jump at Rough Gas–Solid Interface in Couette Flow With a Rough Surface Described by Cantor Fractal
,”
Int. J. Heat Mass Transfer
,
70
, pp.
322
329
.10.1016/j.ijheatmasstransfer.2013.10.080
24.
Dorari
,
E.
,
Saffar-Avval
,
M.
, and
Mansoori
,
Z.
,
2015
, “
Numerical Simulation of Gas Flow and Heat Transfer in a Rough Microchannel Using the Lattice Boltzmann Method
,”
Phys. Rev. E
,
92
(
6
), p.
063034
.10.1103/PhysRevE.92.063034
25.
Avramenko
,
A. A.
,
Kovetska
,
Y. Y.
,
Shevchuk
,
I. V.
,
Tyrinov
,
A. I.
, and
Shevchuk
,
V. I.
,
2019
, “
Heat Transfer in Porous Microchannels With Second-Order Slipping Boundary Conditions
,”
Transp. Porous Media
,
129
(
3
), pp.
673
699
.10.1007/s11242-019-01300-3
26.
Mozaffari, M., D’Orazio, A., Karimipour, A., Abdollahi, A., and Safaei, M. R., 2019, “Lattice Boltzmann Method to Simulate Convection Heat Transfer in a Microchannel Under Heat Flux: Gravity and Inclination Angle on Slip-Velocity,” Int. J. Numer. Meth. Heat & Fluid Flow, 30(6), pp. 3371–3398.
27.
Liu
,
Z.
,
Mu
,
Z.
, and
Wu
,
H.
,
2019
, “
A New Curved Boundary Treatment for LBM Modeling of Thermal Gaseous Microflow in the Slip Regime
,”
Microfluid. Nanofluid.
,
23
(
2
), p.
27
.10.1007/s10404-019-2192-3
28.
Whitaker
,
S.
,
1972
, “
Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and for Flow in Packed Beds and Tube Bundles
,”
AIChE J.
,
18
(
2
), pp.
361
371
.10.1002/aic.690180219
29.
Kamiuto
,
K.
, and
Yee
,
S. S.
,
2005
, “
Heat Transfer Correlations for Open-Cellular Porous Materials
,”
Int. Commun. Heat Mass Transfer
,
32
(
7
), pp.
947
953
.10.1016/j.icheatmasstransfer.2004.10.027
30.
Nakayama
,
A.
,
Ando
,
K.
,
Yang
,
C.
,
Sano
,
Y.
,
Kuwahara
,
F.
, and
Liu
,
J.
,
2009
, “
A Study on Interstitial Heat Transfer in Consolidated and Unconsolidated Porous Media
,”
Heat Mass Transfer
,
45
(
11
), pp.
1365
1372
.10.1007/s00231-009-0513-x
31.
Xia
,
X. L.
,
Chen
,
X.
,
Sun
,
C.
,
Li
,
Z. H.
, and
Liu
,
B.
,
2017
, “
Experiment on the Convective Heat Transfer From Airflow to Skeleton in Open-Cell Porous Foams
,”
Int. J. Heat Mass Transfer
,
106
, pp.
83
90
.10.1016/j.ijheatmasstransfer.2016.10.053
32.
Du
,
S.
,
Tong
,
Z. X.
,
Zhang
,
H. H.
, and
He
,
Y. L.
,
2019
, “
Tomography-Based Determination of Nusselt Number Correlation for the Porous Volumetric Solar Receiver With Different Geometrical Parameters
,”
Renewable Energy
,
135
, pp.
711
718
.10.1016/j.renene.2018.12.001
33.
Kishore
,
N.
, and
Ramteke
,
R. R.
,
2016
, “
Forced Convective Heat Transfer From Spheres to Newtonian Fluids in Steady Axisymmetric Flow Regime With Velocity Slip at Fluid–Solid Interface
,”
Int. J. Therm. Sci.
,
105
, pp.
206
217
.10.1016/j.ijthermalsci.2016.03.009
34.
Liu
,
Z.
,
Zhou
,
J.
, and
Wu
,
H.
,
2018
, “
New Correlations for Slip Flow and Heat Transfer Over a Micro Spherical Particle in Gaseous Fluid
,”
Powder Technol.
,
338
, pp.
129
139
.10.1016/j.powtec.2018.07.006
35.
Higuera
,
F. J.
, and
Jiménez
,
J.
,
1989
, “
Boltzmann Approach to Lattice Gas Simulations
,”
Europhys. Lett. (EPL)
,
9
(
7
), pp.
663
668
.10.1209/0295-5075/9/7/009
36.
Koelman
,
J. M. V. A.
,
1991
, “
A Simple Lattice Boltzmann Scheme for Navier-Stokes Fluid Flow
,”
Europhys. Lett. (EPL)
,
15
(
6
), pp.
603
607
.10.1209/0295-5075/15/6/007
37.
Chen
,
S.
,
Chen
,
H.
,
Martnez
,
D.
, and
Matthaeus
,
W.
,
1991
, “
Lattice Boltzmann Model for Simulation of Magnetohydrodynamics
,”
Phys. Rev. Lett.
,
67
(
27
), pp.
3776
3779
.10.1103/PhysRevLett.67.3776
38.
Qian
,
Y. H.
,
D'Humières
,
D.
, and
Lallemand
,
P.
,
1992
, “
Lattice BGK Models for Navier-Stokes Equation
,”
Europhys. Lett. (EPL)
,
17
(
6
), pp.
479
484
.10.1209/0295-5075/17/6/001
39.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Processes in Gases—I: Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
,
94
(
3
), pp.
511
525
.10.1103/PhysRev.94.511
40.
Lee
,
T.
, and
Lin
,
C. L.
,
2005
, “
Rarefaction and Compressibility Effects of the lattice-Boltzmann-Equation Method in a Gas Microchannel
,”
Phys. Rev. E
,
71
(
4
), p.
046706
.10.1103/PhysRevE.71.046706
41.
Maxwell
,
J. C.
,
1878
, “
On Stresses in Rarefied Gases Arising From Inequalities of Temperature
,”
Proc. R. Soc. London
,
27
(
185–189
), pp.
304
308.
42.
Wang
,
Z.
,
Colin
,
F.
,
Le
,
G.
, and
Zhang
,
J.
,
2017
, “
Counter-Extrapolation Method for Conjugate Heat and Mass Transfer With Interfacial Discontinuity
,”
Int. J. Numer. Methods Heat Fluid Flow
,
27
(
10
), pp.
2231
2258
.10.1108/HFF-10-2016-0422
You do not currently have access to this content.