Abstract

The effect of gravity modulation in controlling the onset of convection in a porous medium saturated with a second-grade fluid of Rivlin–Ericksen type is studied. The Brinkman equation of flow through porous media is considered with effective viscosity different from fluid viscosity. Necessary conditions for the occurrence of instability due to infinitesimal perturbations are found using the method of normal modes. Following Floquet analysis, the thresholds corresponding to synchronous and subharmonic solutions and the transition between them are predicted using the Mathieu functions.

References

1.
Razi
,
Y. P.
,
Maliwan
,
K.
,
Charrier-Mojtabi
,
M. C.
, and
Mojtabi
,
A.
,
2005
, “
The Influence of Mechanical Vibrations on Buoyancy Induced Convection in Porous Media
,”
Handbook of Porous Media
(Flow Induced by Natural Convection and Vibration and Double Diffusive Convection in Porous Media),
K.
Vafai
, ed., 2nd ed.,
Taylor and Francis Group/CRC Press
,
Boca Raton, FL
, pp.
321
370
.
2.
Malashetty
,
M. S.
, and
Padmavathi
,
V.
,
1997
, “
Effect of Gravity Modulation on the Onset of Convection in a Fluid and Porous Layer
,”
Int. J. Eng. Sci.
,
35
(
9
), pp.
829
840
.10.1016/S0020-7225(97)80002-X
3.
Bardan
,
G.
, and
Mojtabi
,
A.
,
2000
, “
On the Horton-Rogers-Lapwood Convective Instability With Vertical Vibration
,”
Phys. Fluids
,
12
(
11
), pp.
2723
2731
.10.1063/1.1313551
4.
Govender
,
S.
,
2004
, “
Stability of Convection in Gravity Modulated Porous Layer Heated From Below
,”
Transp. Porous Media
,
57
(
1
), pp.
113
123
.10.1023/B:TIPM.0000032739.39927.af
5.
Govender
,
S.
,
2005
, “
Destabilizing a Fluid Saturated Gravity Modulated Porous Layer Heated From Above
,”
Transp. Porous Media
,
59
(
2
), pp.
215
225
.10.1007/s11242-004-1490-7
6.
Saravanan
,
S.
, and
Sivakumar
,
T.
,
2010
, “
Onset of Filtration Convection in a Vibrating Medium: The Brinkman Model
,”
Phys. Fluids
,
22
(
3
), p.
034104
.10.1063/1.3358461
7.
Saravanan
,
S.
, and
Sivakumar
,
T.
,
2011
, “
Onset of Thermovibrational Filtration Convection: Departure From Thermal Equilibrium
,”
Phys. Rev. E
,
84
(
2
), p.
026307
.10.1103/PhysRevE.84.026307
8.
Bird
,
R. B.
,
Curtis
,
C. F.
,
Armstrong
,
R.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymeric Liquids
,
Wiley
,
New York
.
9.
Rudraiah
,
N.
,
Radhadevi
,
P. V.
, and
Kaloni
,
P. N.
,
1990
, “
Convection in a Viscoelastic Fluid-Saturated Sparsely Packed Porous Layer
,”
Can. J. Phys.
,
68
(
12
), pp.
1446
1453
.10.1139/p90-207
10.
Yang
,
W. M.
,
1997
, “
Stability of Viscoelastic Fluids in a Modulated Gravitational Field
,”
Int. J. Heat Mass Transfer
,
40
(
6
), pp.
1401
1410
.10.1016/S0017-9310(96)00194-9
11.
Shivakumara
,
I. S.
,
Malashetty
,
M. S.
, and
Chavaraddi
,
K. B.
,
2006
, “
Onset of Convection in a Viscoelastic Fluid Saturated Sparsely Packed Porous Layer Using a Thermal Nonequilibrium Model
,”
Can. J. Phys.
,
84
(
11
), pp.
973
990
.10.1139/p06-085
12.
Tan
,
W.
, and
Masuoka
,
T.
,
2007
, “
Stability Analysis of a Maxwell Fluid in a Porous Medium Heated From Below
,”
Phys. Lett. A
,
360
(
3
), pp.
454
460
.10.1016/j.physleta.2006.08.054
13.
Niu
,
J.
,
Fu
,
C.
, and
Tan
,
W.
,
2010
, “
Stability of Thermal Convection of an Oldroyd-B Fluid in a Porous Medium With Newtonian Heating
,”
Phys. Lett. A
,
374
(
45
), pp.
4607
4613
.10.1016/j.physleta.2010.09.028
14.
Rivlin
,
R.
, and
Ericksen
,
J.
,
1955
, “
Stress-Deformation Relations for Isotropic Materials
,”
J. Rational Mech. Anal.
,
4
(
2
), pp.
323
425
.10.1512/iumj.1955.4.54011
15.
Straughan
,
B.
,
1983
, “
Energy Stability in the Benard Problem for a Fluid of Second Grade
,”
J. Appl. Math. Phys.
,
34
(
4
), pp.
502
509
.10.1007/BF00944711
16.
Siddheshwar
,
P. G.
, and
Sri Krishna
,
C. V.
,
2003
, “
Linear and Nonlinear Analyses of Convection in a Rivlin-Ericksen Fluid Saturated Porous Medium
,”
Int. J. Appl. Mech. Eng.
,
8
(
4
), pp.
677
692
.https://www.infona.pl/resource/bwmeta1.element.baztech-article-BPZ2-0003-0036/tab/summary
17.
Siddheshwar
,
P. G.
,
Sekhar
,
G. N.
, and
Jayalatha
,
G.
,
2010
, “
Effect of Time-Periodic Vertical Oscillations of the Rayleigh-Benard System on Nonlinear Convection in Viscoelastic Liquids
,”
J. Non-Newtonian Fluid Mech.
,
165
(
19–20
), pp.
1412
1418
.10.1016/j.jnnfm.2010.07.008
18.
Prakash
,
K.
, and
Kumar
,
N.
,
1999
, “
Thermal Instability in Rivlin-Ericksen Elastico-Viscous Fluid in the Presence of Finite Larmor Radius and Variable Gravity in Porous Medium
,”
J. Phys. Soc. Jpn.
,
68
(
4
), pp.
1168
1172
.10.1143/JPSJ.68.1168
19.
Sri Krishna
,
C. V.
,
2001
, “
Effects of Non-Inertial Acceleration on the Onset of Convection in a Second-Order Fluid-Saturated Porous Medium
,”
Int. J. Eng. Sci.
,
39
(
5
), pp.
599
609
.10.1016/S0020-7225(00)00058-6
20.
Sharma
,
R. C.
, and
Pal
,
M.
,
2002
, “
Hall Effect on Thermosolutal Instability of a Rivlin-Ericksen Fluid in a Porous Medium
,”
J. Non-Equilib. Thermodyn.
,
26
(
4
), pp.
373
386
.10.1515/JNETDY.2002.024
21.
Xu
,
L.
, and
Yang
,
S.
,
2007
, “
Stability Analysis of Thermosolutal Second-Order Fluid in Porous Benard Layer
,”
R. Mat.
,
56
(
1
), pp.
149
160
.10.1007/s11587-007-0010-9
22.
Liu
,
I. C.
,
2004
, “
Effect of Modulation on Onset of Thermal Convection of a Second Grade Fluid Layer
,”
Int. J. Non-Linear Mech.
,
39
(
10
), pp.
1647
1657
.10.1016/j.ijnonlinmec.2004.04.002
23.
Kumar
,
P.
,
Mohan
,
H.
, and
Lal
,
R.
,
2006
, “
Effect of Magnetic Field on Thermal Instability of a Rotating Rivlin-Ericksen Viscoelastic Fluid
,”
Int. J. Math. Math. Sci.
,
2006
(
3
), pp.
1
10
.10.1155/IJMMS/2006/028042
24.
Rana
,
G. C.
, and
Sharma
,
V.
,
2012
, “
Effect of Rotation on the Onset of Convection in Rivlin-Ericksen Fluid Heated From Below in a Brinkman Porous Medium
,”
Int. J. Fluid Mech. Res.
,
39
(
6
), pp.
467
477
.10.1615/InterJFluidMechRes.v39.i6.10
25.
Bhadauria
,
B. S.
,
Srivastava
,
A. K.
,
Sacheti
,
N. C.
, and
Chandran
,
P.
,
2012
, “
Gravity Modulation of Thermal Instability in a Viscoelastic Fluid Saturated Anisotropic Porous Medium
,”
Z. Naturforsch. A
,
67
(
1–2
), pp.
1
9
.10.5560/zna.2011-0045
26.
Saravanan
,
S.
, and
Brinda
,
R. K.
,
2013
, “
Thermovibrational Filtration Convection in Memory Fluids: Bottom and Top Heating
,”
Int. J. Heat Mass Transfer
,
64
, pp.
21
27
.10.1016/j.ijheatmasstransfer.2013.03.084
27.
Dunn
,
J. E.
, and
Rajagopal
,
K. R.
,
1995
, “
Fluids of Differential Type: Critical Review and Thermodynamic Analysis
,”
Int. J. Eng. Sci.
,
33
(
5
), pp.
689
729
.10.1016/0020-7225(94)00078-X
28.
Fosdick
,
R. L.
, and
Rajagopal
,
K. R.
,
1979
, “
Anomalous Features in the Model of Second Order Fluids
,”
Arch. Rational Mech. Anal.
,
70
(
2
), pp.
145
152
.10.1007/BF00250351
29.
Prusa
,
V. I. T.
, and
Rajagopal
,
K. R.
,
2013
, “
On Models for Viscoelastic Materials That Are Mechanically Incompressible and Thermally Compressible or Expansible and Their Oberbeck-Boussinesq Type Approximations
,”
Math. Model. Methods Appl. Sci.
,
23
(
10
), pp.
1761
1794
.10.1142/S0218202513500516
30.
McLachlan
,
N. M.
,
1947
,
Theory and Applications of Mathieu Functions
,
Clarendon Press
,
Oxford, UK
.
31.
Saravanan
,
S.
, and
Premalatha
,
D.
,
2012
, “
Effect of Couple Stress on the Onset of Thermovibrational Convection in a Porous Medium
,”
Int. J. Therm. Sci.
,
57
, pp.
71
77
.10.1016/j.ijthermalsci.2012.02.013
You do not currently have access to this content.