Abstract
The effect of gravity modulation in controlling the onset of convection in a porous medium saturated with a second-grade fluid of Rivlin–Ericksen type is studied. The Brinkman equation of flow through porous media is considered with effective viscosity different from fluid viscosity. Necessary conditions for the occurrence of instability due to infinitesimal perturbations are found using the method of normal modes. Following Floquet analysis, the thresholds corresponding to synchronous and subharmonic solutions and the transition between them are predicted using the Mathieu functions.
Issue Section:
Porous Media
References
1.
Razi
,
Y. P.
,
Maliwan
,
K.
,
Charrier-Mojtabi
,
M. C.
, and
Mojtabi
,
A.
, 2005
, “
The Influence of Mechanical Vibrations on Buoyancy Induced Convection in Porous Media
,” Handbook of Porous Media
(Flow Induced by Natural Convection and Vibration and Double Diffusive Convection in Porous Media),
K.
Vafai
, ed., 2nd ed.,
Taylor and Francis Group/CRC Press
,
Boca Raton, FL
, pp. 321
–370
.2.
Malashetty
,
M. S.
, and
Padmavathi
,
V.
, 1997
, “
Effect of Gravity Modulation on the Onset of Convection in a Fluid and Porous Layer
,” Int. J. Eng. Sci.
,
35
(9
), pp. 829
–840
.10.1016/S0020-7225(97)80002-X3.
Bardan
,
G.
, and
Mojtabi
,
A.
, 2000
, “
On the Horton-Rogers-Lapwood Convective Instability With Vertical Vibration
,” Phys. Fluids
,
12
(11
), pp. 2723
–2731
.10.1063/1.13135514.
Govender
,
S.
, 2004
, “
Stability of Convection in Gravity Modulated Porous Layer Heated From Below
,” Transp. Porous Media
,
57
(1
), pp. 113
–123
.10.1023/B:TIPM.0000032739.39927.af5.
Govender
,
S.
, 2005
, “
Destabilizing a Fluid Saturated Gravity Modulated Porous Layer Heated From Above
,” Transp. Porous Media
,
59
(2
), pp. 215
–225
.10.1007/s11242-004-1490-76.
Saravanan
,
S.
, and
Sivakumar
,
T.
, 2010
, “
Onset of Filtration Convection in a Vibrating Medium: The Brinkman Model
,” Phys. Fluids
,
22
(3
), p. 034104
.10.1063/1.33584617.
Saravanan
,
S.
, and
Sivakumar
,
T.
, 2011
, “
Onset of Thermovibrational Filtration Convection: Departure From Thermal Equilibrium
,” Phys. Rev. E
,
84
(2
), p. 026307
.10.1103/PhysRevE.84.0263078.
Bird
,
R. B.
,
Curtis
,
C. F.
,
Armstrong
,
R.
, and
Hassager
,
O.
, 1987
, Dynamics of Polymeric Liquids
,
Wiley
,
New York
.9.
Rudraiah
,
N.
,
Radhadevi
,
P. V.
, and
Kaloni
,
P. N.
, 1990
, “
Convection in a Viscoelastic Fluid-Saturated Sparsely Packed Porous Layer
,” Can. J. Phys.
,
68
(12
), pp. 1446
–1453
.10.1139/p90-20710.
Yang
,
W. M.
, 1997
, “
Stability of Viscoelastic Fluids in a Modulated Gravitational Field
,” Int. J. Heat Mass Transfer
,
40
(6
), pp. 1401
–1410
.10.1016/S0017-9310(96)00194-911.
Shivakumara
,
I. S.
,
Malashetty
,
M. S.
, and
Chavaraddi
,
K. B.
, 2006
, “
Onset of Convection in a Viscoelastic Fluid Saturated Sparsely Packed Porous Layer Using a Thermal Nonequilibrium Model
,” Can. J. Phys.
,
84
(11
), pp. 973
–990
.10.1139/p06-08512.
Tan
,
W.
, and
Masuoka
,
T.
, 2007
, “
Stability Analysis of a Maxwell Fluid in a Porous Medium Heated From Below
,” Phys. Lett. A
,
360
(3
), pp. 454
–460
.10.1016/j.physleta.2006.08.05413.
Niu
,
J.
,
Fu
,
C.
, and
Tan
,
W.
, 2010
, “
Stability of Thermal Convection of an Oldroyd-B Fluid in a Porous Medium With Newtonian Heating
,” Phys. Lett. A
,
374
(45
), pp. 4607
–4613
.10.1016/j.physleta.2010.09.02814.
Rivlin
,
R.
, and
Ericksen
,
J.
, 1955
, “
Stress-Deformation Relations for Isotropic Materials
,” J. Rational Mech. Anal.
,
4
(2
), pp. 323
–425
.10.1512/iumj.1955.4.5401115.
Straughan
,
B.
, 1983
, “
Energy Stability in the Benard Problem for a Fluid of Second Grade
,” J. Appl. Math. Phys.
,
34
(4
), pp. 502
–509
.10.1007/BF0094471116.
Siddheshwar
,
P. G.
, and
Sri Krishna
,
C. V.
, 2003
, “
Linear and Nonlinear Analyses of Convection in a Rivlin-Ericksen Fluid Saturated Porous Medium
,” Int. J. Appl. Mech. Eng.
,
8
(4
), pp. 677
–692
.https://www.infona.pl/resource/bwmeta1.element.baztech-article-BPZ2-0003-0036/tab/summary17.
Siddheshwar
,
P. G.
,
Sekhar
,
G. N.
, and
Jayalatha
,
G.
, 2010
, “
Effect of Time-Periodic Vertical Oscillations of the Rayleigh-Benard System on Nonlinear Convection in Viscoelastic Liquids
,” J. Non-Newtonian Fluid Mech.
,
165
(19–20
), pp. 1412
–1418
.10.1016/j.jnnfm.2010.07.00818.
Prakash
,
K.
, and
Kumar
,
N.
, 1999
, “
Thermal Instability in Rivlin-Ericksen Elastico-Viscous Fluid in the Presence of Finite Larmor Radius and Variable Gravity in Porous Medium
,” J. Phys. Soc. Jpn.
,
68
(4
), pp. 1168
–1172
.10.1143/JPSJ.68.116819.
Sri Krishna
,
C. V.
, 2001
, “
Effects of Non-Inertial Acceleration on the Onset of Convection in a Second-Order Fluid-Saturated Porous Medium
,” Int. J. Eng. Sci.
,
39
(5
), pp. 599
–609
.10.1016/S0020-7225(00)00058-620.
Sharma
,
R. C.
, and
Pal
,
M.
, 2002
, “
Hall Effect on Thermosolutal Instability of a Rivlin-Ericksen Fluid in a Porous Medium
,” J. Non-Equilib. Thermodyn.
,
26
(4
), pp. 373
–386
.10.1515/JNETDY.2002.02421.
Xu
,
L.
, and
Yang
,
S.
, 2007
, “
Stability Analysis of Thermosolutal Second-Order Fluid in Porous Benard Layer
,” R. Mat.
,
56
(1
), pp. 149
–160
.10.1007/s11587-007-0010-922.
Liu
,
I. C.
, 2004
, “
Effect of Modulation on Onset of Thermal Convection of a Second Grade Fluid Layer
,” Int. J. Non-Linear Mech.
,
39
(10
), pp. 1647
–1657
.10.1016/j.ijnonlinmec.2004.04.00223.
Kumar
,
P.
,
Mohan
,
H.
, and
Lal
,
R.
, 2006
, “
Effect of Magnetic Field on Thermal Instability of a Rotating Rivlin-Ericksen Viscoelastic Fluid
,” Int. J. Math. Math. Sci.
,
2006
(3
), pp. 1
–10
.10.1155/IJMMS/2006/02804224.
Rana
,
G. C.
, and
Sharma
,
V.
, 2012
, “
Effect of Rotation on the Onset of Convection in Rivlin-Ericksen Fluid Heated From Below in a Brinkman Porous Medium
,” Int. J. Fluid Mech. Res.
,
39
(6
), pp. 467
–477
.10.1615/InterJFluidMechRes.v39.i6.1025.
Bhadauria
,
B. S.
,
Srivastava
,
A. K.
,
Sacheti
,
N. C.
, and
Chandran
,
P.
, 2012
, “
Gravity Modulation of Thermal Instability in a Viscoelastic Fluid Saturated Anisotropic Porous Medium
,” Z. Naturforsch. A
,
67
(1–2
), pp. 1
–9
.10.5560/zna.2011-004526.
Saravanan
,
S.
, and
Brinda
,
R. K.
, 2013
, “
Thermovibrational Filtration Convection in Memory Fluids: Bottom and Top Heating
,” Int. J. Heat Mass Transfer
,
64
, pp. 21
–27
.10.1016/j.ijheatmasstransfer.2013.03.08427.
Dunn
,
J. E.
, and
Rajagopal
,
K. R.
, 1995
, “
Fluids of Differential Type: Critical Review and Thermodynamic Analysis
,” Int. J. Eng. Sci.
,
33
(5
), pp. 689
–729
.10.1016/0020-7225(94)00078-X28.
Fosdick
,
R. L.
, and
Rajagopal
,
K. R.
, 1979
, “
Anomalous Features in the Model of Second Order Fluids
,” Arch. Rational Mech. Anal.
,
70
(2
), pp. 145
–152
.10.1007/BF0025035129.
Prusa
,
V. I. T.
, and
Rajagopal
,
K. R.
, 2013
, “
On Models for Viscoelastic Materials That Are Mechanically Incompressible and Thermally Compressible or Expansible and Their Oberbeck-Boussinesq Type Approximations
,” Math. Model. Methods Appl. Sci.
,
23
(10
), pp. 1761
–1794
.10.1142/S021820251350051630.
McLachlan
,
N. M.
, 1947
, Theory and Applications of Mathieu Functions
,
Clarendon Press
,
Oxford, UK
.31.
Saravanan
,
S.
, and
Premalatha
,
D.
, 2012
, “
Effect of Couple Stress on the Onset of Thermovibrational Convection in a Porous Medium
,” Int. J. Therm. Sci.
,
57
, pp. 71
–77
.10.1016/j.ijthermalsci.2012.02.013Copyright © 2020 by ASME
You do not currently have access to this content.