Abstract

An experimental investigation of subcooled flow boiling in a high-aspect-ratio, one-sided heating, silicon-based rectangular microchannel was conducted utilizing de-ionized water as the working fluid. The microchannel was 5.01 mm wide and 0.52 mm high, having a hydraulic diameter of 0.94 mm and an aspect ratio (AR) of 10. The heat flux, mass flux, and inlet fluid subcooling were in the ranges of 0–30 W/cm2, 200–500 kg/m2 s, and 5–20 °C, respectively, while the orientations were vertical and horizontal. Parametric study on heat transfer characteristics including the onset of nucleate boiling (ONB), heat transfer coefficient (HTC), and critical heat flux (CHF) was carried out combined with flow visualization. Significant appearance of ONB without boiling hysteresis was observed in the boiling curve, accompanied with bubble nucleation. Nucleate boiling occurred first near the exit, where the HTC increased more sharply, while easier bubble nucleation was found near the sides. Unique time-dependent flow pattern consisting of isolated bubbly flow, elongated bubbly flow, partial dry-out, and rewetting process was observed. More nucleation sites were activated at higher heat flux, while higher initial heat flux and wall superheat for ONB as well as higher CHF value were obtained at higher mass flux and inlet subcooling. Compared to the vertical channel, higher wall temperature and pressure drop with larger oscillation amplitudes were found for the horizontal counterpart, where the merged bubbles agglomerated in the heating section, resulting in earlier dry-out which deteriorated heat transfer.

References

1.
Lin
,
S.
,
Sefiane
,
K.
, and
Christy
,
J. R. E.
,
2002
, “
Prospects of Confined Flow Boiling in Thermal Management of Microsystems
,”
Appl. Therm. Eng.
,
22
(
7
), pp.
825
837
.10.1016/S1359-4311(01)00124-7
2.
Joshi
,
S. N.
, and
Dede
,
E. M.
,
2015
, “
Effect of Sub-Cooling on Performance of a Multi-Jet Two Phase Cooler With Multi-Scale Porous Surfaces
,”
Int. J. Therm. Sci.
,
87
, pp.
110
120
.10.1016/j.ijthermalsci.2014.08.014
3.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
,
2009
, “
Effects of Heat Flux, Mass Flux, Vapor Quality, and Saturation Temperature on Flow Boiling Heat Transfer in Microchannels
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
142
154
.10.1016/j.ijmultiphaseflow.2008.10.004
4.
Karayiannis
,
T. G.
, and
Mahmoud
,
M. M.
,
2017
, “
Flow Boiling in Microchannels: Fundamentals and Applications
,”
Appl. Therm. Eng.
,
115
, pp.
1372
1397
.10.1016/j.applthermaleng.2016.08.063
5.
Ribatski
,
G.
,
Navarro
,
H. A.
,
Cabezas-Gómez
,
L.
, and
Saíz-Jabardo
,
J. M.
,
2007
, “
The Advantages of Evaporation in Micro-Scale Channels to Cool Microelectronic Devices
,”
Therm. Eng.
,
6
(
2
), pp.
34
39
.10.5380/reterm.v6i2.61688
6.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks–I: Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2755
2771
.10.1016/S0017-9310(03)00041-3
7.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Elect. Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
8.
Kandlikar
,
S. G.
,
2012
, “
History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
ASME J. Heat Transfer
,
134
(
3
), p.
34001
.10.1115/1.4005126
9.
Li
,
W.
, and
Wu
,
Z.
,
2010
, “
A General Criterion for Evaporative Heat Transfer in Micro/Mini-Channels
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1967
1976
.10.1016/j.ijheatmasstransfer.2009.12.059
10.
Li
,
W.
, and
Wu
,
Z.
,
2010
, “
A General Correlation for Evaporative Heat Transfer in Micro/Mini-Channels
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1778
1787
.10.1016/j.ijheatmasstransfer.2010.01.012
11.
Li
,
W.
, and
Wu
,
Z.
,
2010
, “
A General Correlation for Adiabatic Two-Phase Pressure Drop in Micro/Mini-Channels
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2732
2739
.10.1016/j.ijheatmasstransfer.2010.02.029
12.
Wu
,
Z.
, and
Li
,
W.
,
2011
, “
A New Predictive Tool for Saturated Critical Heat Flux in Micro/Mini-Channels: Effect of the Heated Length-to-Diameter Ratio
,”
Int. J. Heat Mass Transfer
,
54
(
13–14
), pp.
2880
2889
.10.1016/j.ijheatmasstransfer.2011.03.011
13.
Wu
,
Z.
,
Wu
,
Y.
,
Sundén
,
B.
, and
Li
,
W.
,
2013
, “
Convective Vaporization in Micro-Fin Tubes of Different Geometries
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
398
408
.10.1016/j.expthermflusci.2012.07.012
14.
Wu
,
Z.
,
Li
,
W.
, and
Ye
,
S.
,
2011
, “
Correlations for Saturated Critical Heat Flux in Microchannels
,”
Int. J. Heat Mass Transfer
,
54
(
1–3
), pp.
379
389
.10.1016/j.ijheatmasstransfer.2010.09.033
15.
Li
,
W.
, and
Wu
,
Z.
,
2011
, “
Generalized Adiabatic Pressure Drop Correlations in Evaporative Micro/Mini-Channels
,”
Exp. Therm. Fluid Sci.
,
35
(
6
), pp.
866
872
.10.1016/j.expthermflusci.2010.07.005
16.
Cheng
,
L.
, and
Xia
,
G.
,
2017
, “
Fundamental Issues, Mechanisms and Models of Flow Boiling Heat Transfer in Microscale Channels
,”
Int. J. Heat Mass Transfer
,
108
, pp.
97
127
.10.1016/j.ijheatmasstransfer.2016.12.003
17.
Kharangate
,
C. R.
,
O'Neill
,
L. E.
, and
Mudawar
,
I.
,
2016
, “
Effects of Two-Phase Inlet Quality, Mass Velocity, Flow Orientation, and Heating Perimeter on Flow Boiling in a Rectangular Channel—Part 1: Two-Phase Flow and Heat Transfer Results
,”
Int. J. Heat Mass Transfer
,
103
, pp.
1261
1279
.10.1016/j.ijheatmasstransfer.2016.05.060
18.
Gan
,
Y.
,
Xu
,
J.
, and
Yan
,
Y.
,
2015
, “
An Experimental Study of Two-Phase Pressure Drop of Acetone in Triangular Silicon Micro-Channels
,”
Appl. Therm. Eng.
,
80
, pp.
76
86
.10.1016/j.applthermaleng.2015.01.038
19.
Chen
,
G.
,
Quan
,
X.
, and
Cheng
,
P.
,
2010
, “
Effects of Pulse Width and Mass Flux on Microscale Flow Boiling Under Pulse Heating
,”
Int. Commun. Heat Mass Transfer
,
37
(
7
), pp.
792
795
.10.1016/j.icheatmasstransfer.2010.03.007
20.
Kanizawa
,
F. T.
,
Tibiriçá
,
C. B.
, and
Ribatski
,
G.
,
2016
, “
Heat Transfer During Convective Boiling Inside Microchannels
,”
Int. J. Heat Mass Transfer
,
93
, pp.
566
583
.10.1016/j.ijheatmasstransfer.2015.09.083
21.
Soupremanien
,
U.
,
Person
,
S. L.
,
Favre-Marinet
,
M.
, and
Bultel
,
Y.
,
2011
, “
Influence of the Aspect Ratio on Boiling Flows in Rectangular Mini-Channels
,”
Exp. Therm. Fluid Sci.
,
35
(
5
), pp.
797
809
.10.1016/j.expthermflusci.2010.06.014
22.
Markal
,
B.
,
Aydin
,
O.
, and
Avci
,
M.
,
2016
, “
Effect of Aspect Ratio on Saturated Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
93
, pp.
130
143
.10.1016/j.ijheatmasstransfer.2015.10.024
23.
Markal
,
B.
,
Aydin
,
O.
, and
Avci
,
M.
,
2017
, “
Prediction of Heat Transfer Coefficient in Saturated Flow Boiling Heat Transfer in Parallel Rectangular Microchannel Heat Sinks: An Experimental Study
,”
Heat Transfer Eng.
,
38
(
16
), pp.
1415
1428
.10.1080/01457632.2016.1255038
24.
Hong
,
S.
,
Tang
,
Y.
,
Dang
,
C.
, and
Wang
,
S.
,
2018
, “
Experimental Research of the Critical Geometric Parameters on Subcooled Flow Boiling in Confined Microchannels
,”
Int. J. Heat Mass Transfer
,
116
, pp.
73
83
.10.1016/j.ijheatmasstransfer.2017.09.017
25.
Mudawar
,
I.
,
2011
, “
Two-Phase Microchannel Heat Sinks: Theory, Applications, and Limitations
,”
ASME J. Electron. Packag.
,
133
(
4
), p.
041002
.10.1115/1.4005300
26.
Wang
,
Y.
,
Sefiane
,
K.
, and
Harmand
,
S.
,
2012
, “
Flow Boiling in High-Aspect Ratio Mini- and Micro-Channels With FC-72 and Ethanol: Experimental Results and Heat Transfer Correlation Assessments
,”
Exp. Therm. Fluid Sci.
,
36
, pp.
93
106
.10.1016/j.expthermflusci.2011.09.001
27.
Wang
,
Y.
, and
Sefiane
,
K.
,
2012
, “
Effects of Heat Flux, Vapour Quality, Channel Hydraulic Diameter on Flow Boiling Heat Transfer in Variable Aspect Ratio Micro-Channels Using Transparent Heating
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2235
2243
.10.1016/j.ijheatmasstransfer.2012.01.044
28.
Alam
,
T.
,
Lee
,
P. S.
,
Yap
,
C. R.
, and
Jin
,
L.
,
2012
, “
Experimental Investigation of Local Flow Boiling Heat Transfer and Pressure Drop Characteristics in Microgap Channel
,”
Int. J. Multiphase Flow
,
42
, pp.
164
174
.10.1016/j.ijmultiphaseflow.2012.02.007
29.
Yin
,
L.
,
Xu
,
R.
,
Jiang
,
P.
,
Cai
,
H.
, and
Jia
,
L.
,
2017
, “
Subcooled Flow Boiling of Water in a Large Aspect Ratio Microchannel
,”
Int. J. Heat Mass Transfer
,
112
, pp.
1081
1089
.10.1016/j.ijheatmasstransfer.2017.05.028
30.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
Control and Effect of Dissolved Air in Water During Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
47
(
8–9
), pp.
1925
1935
.10.1016/j.ijheatmasstransfer.2003.09.031
31.
Li
,
W.
,
Chen
,
Z.
,
Li
,
J.
,
Sheng
,
K.
, and
Zhu
,
J.
,
2019
, “
Subcooled Flow Boiling on Hydrophilic and Super-Hydrophilic Surfaces in Microchannel Under Different Orientations
,”
Int. J. Heat Mass Transfer
,
129
, pp.
635
649
.10.1016/j.ijheatmasstransfer.2018.10.003
32.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
33.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1994
,
Convective Boiling and Condensation
,
Oxford University Press, Oxford
, UK.
34.
Thome
,
J. R.
,
2004
, “
Boiling in Microchannels: A Review of Experiment and Theory
,”
Int. J. Heat Fluid Flow
,
25
(
2
), pp.
128
139
.10.1016/j.ijheatfluidflow.2003.11.005
35.
Wang
,
G.
, and
Cheng
,
P.
,
2009
, “
Subcooled Flow Boiling and Microbubble Emission Boiling Phenomena in a Partially Heated Microchannel
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
79
91
.10.1016/j.ijheatmasstransfer.2008.06.031
36.
Phan
,
H. T.
,
Caney
,
N.
,
Marty
,
P.
,
Colasson
,
S.
, and
Gavillet
,
J.
,
2012
, “
Flow Boiling of Water on Nanocoated Surfaces in a Microchannel
,”
ASME J. Heat Transfer
,
134
(
2
), p.
020901
.10.1115/1.4004935
37.
Shin
,
S.
,
Choi
,
G.
,
Kim
,
B. S.
, and
Cho
,
H. H.
,
2014
, “
Flow Boiling Heat Transfer on Nanowire-Coated Surfaces With Highly Wetting Liquid
,”
Energy
,
76
, pp.
428
435
.10.1016/j.energy.2014.08.037
38.
Chang
,
W. R.
,
Chen
,
C. A.
,
Ke
,
J. H.
, and
Lin
,
T. F.
,
2010
, “
Subcooled Flow Boiling Heat Transfer and Associated Bubble Characteristics of FC-72 on a Heated Micro-Pin-Finned Silicon Chip
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5605
5621
.10.1016/j.ijheatmasstransfer.2010.05.014
39.
Sitar
,
A.
,
Sedmak
,
I.
, and
Golobic
,
I.
,
2012
, “
Boiling of Water and FC-72 in Microchannels Enhanced With Novel Features
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6446
6457
.10.1016/j.ijheatmasstransfer.2012.06.040
40.
Li
,
Y.
,
Xia
,
G.
,
Jia
,
Y.
,
Cheng
,
Y.
, and
Wang
,
J.
,
2017
, “
Experimental Investigation of Flow Boiling Performance in Microchannels With and Without Triangular Cavities–A Comparative Study
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1511
1526
.10.1016/j.ijheatmasstransfer.2017.01.011
41.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer
,
84
(
3
), pp.
207
213
.10.1115/1.3684339
42.
Liu
,
D.
,
Lee
,
P. S.
, and
Garimella
,
S. V.
,
2005
, “
Prediction of the Onset of Nucleate Boiling in Microchannel Flow
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5134
5149
.10.1016/j.ijheatmasstransfer.2005.07.021
43.
Kandlikar
,
S. G.
, and
Balasubramanian
,
P.
,
2005
, “
An Experimental Study on the Effect of Gravitational Orientation on Flow Boiling of Water in 1054 × 197 μm Parallel Minichannels
,”
ASME J. Heat Transfer
,
127
(
8
), pp.
820
829
.10.1115/1.1928911
44.
Wang
,
C.-C.
,
Chang
,
W.-J.
,
Dai
,
C.-H.
,
Lin
,
Y.-T.
, and
Yang
,
K.-S.
,
2012
, “
Effect of Inclination on the Convective Boiling Performance of a Microchannel Heat Sink Using HFE-7100
,”
Exp. Therm. Fluid Sci.
,
36
(
1
), pp.
143
148
.10.1016/j.expthermflusci.2011.09.006
45.
Leão
,
H. L. S. L.
,
Chávez
,
C. A.
,
Nascimento
,
F. J.
, and
Ribatski
,
G.
,
2015
, “
An Analysis of the Effect of the Footprint Orientation on the Thermal-Hydraulic Performance of a Microchannels Heat Sink During Flow Boiling of R245fa
,”
Appl. Therm. Eng.
,
90
, pp.
907
926
.10.1016/j.applthermaleng.2015.07.043
You do not currently have access to this content.