Abstract
An experimental investigation of subcooled flow boiling in a high-aspect-ratio, one-sided heating, silicon-based rectangular microchannel was conducted utilizing de-ionized water as the working fluid. The microchannel was 5.01 mm wide and 0.52 mm high, having a hydraulic diameter of 0.94 mm and an aspect ratio (AR) of 10. The heat flux, mass flux, and inlet fluid subcooling were in the ranges of 0–30 W/cm2, 200–500 kg/m2 s, and 5–20 °C, respectively, while the orientations were vertical and horizontal. Parametric study on heat transfer characteristics including the onset of nucleate boiling (ONB), heat transfer coefficient (HTC), and critical heat flux (CHF) was carried out combined with flow visualization. Significant appearance of ONB without boiling hysteresis was observed in the boiling curve, accompanied with bubble nucleation. Nucleate boiling occurred first near the exit, where the HTC increased more sharply, while easier bubble nucleation was found near the sides. Unique time-dependent flow pattern consisting of isolated bubbly flow, elongated bubbly flow, partial dry-out, and rewetting process was observed. More nucleation sites were activated at higher heat flux, while higher initial heat flux and wall superheat for ONB as well as higher CHF value were obtained at higher mass flux and inlet subcooling. Compared to the vertical channel, higher wall temperature and pressure drop with larger oscillation amplitudes were found for the horizontal counterpart, where the merged bubbles agglomerated in the heating section, resulting in earlier dry-out which deteriorated heat transfer.