Abstract

To address the impact of temperature on the normal operation and service life of high-power electronic components, a circular microchannel heat sink with cones has been designed. The cones are evenly arranged inside circular microchannels, which can change the flow state of the cooling medium in the microchannels and enhance the heat transfer performance. The experimental scheme of the heat transfer performance of microchannel heat sink was designed by an orthogonal test method, and the numerical simulation was carried out by ansys thermal-fluid–solid coupling. Within the test parameters, the inlet pore size, the split outer diameter, and the number of cone columns have effect the temperature of the heat sink base. Further, the inlet pore size and the number of cone columns have a heightened effect on the test results: the base temperature of the heat sink decreases rapidly with the increase in the inlet pore size and the number of cone columns. According to the orthogonal test analysis, the structural parameters of the heat sink were optimized. Under the condition that the other boundary conditions are the same, the temperature of the heat sink substrate obtained by the new factor levels combination is 27.87 °C.

References

1.
Yuling
,
Z.
,
Guodong
,
X.
,
Xianfe
,
L.
, and Yifan, L.,
2014
, “
Thermodynamic Analysis of Liquid Heat Transfer Enhancement Process of Complex Structure Microchannel Heat Sink
,”
J. Chem. Eng.
,
65
(
9
), pp.
3403
3409
.10.3969/j.issn.0438-1157.2014.09.013
2.
Hung
,
T.-C.
,
Yan
,
W.-M.
,
Wang
,
X.-D.
, and
Huang
,
Y.-X.
,
2012
, “
Optimal Design of Geometric Parameters of Double-Layered Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
55
(
11–12
), pp.
3262
3272
.10.1016/j.ijheatmasstransfer.2012.02.059
3.
Xie
,
G.
,
Li
,
Y.
,
Zhang
,
F.
, and
Sundén
,
B.
,
2016
, “
Analysis of Microchannel Heat Sinks With Rectangular-Shaped Flow Obstructions
,”
Numer. Heat Transfer
,
69
(
4
), pp.
335
351
.10.1080/10407782.2015.1080580
4.
Wei
,
Z.
,
2017
, “
Convective Heat Transfer Characteristics of Microchannel Heat Exchanger Based on Field-Synergy Principle
,” M.S. dissertation, Anhui University of Technology, Ma'anshan, Anhui Province, China.
5.
Raja Kuppusamy
,
N.
,
Saidur
,
R.
,
Ghazali
,
N. N. N.
, and
Mohammed
,
H. A.
,
2014
, “
Numerical Study of Thermal Enhancement in Micro Channel Heat Sink With Secondary Flow
,”
Int. J. Heat Mass Transfer
,
78
, pp.
216
223
.10.1016/j.ijheatmasstransfer.2014.06.072
6.
Yuling
,
Z.
,
Guijian
,
Z.
, and
Zhouhang
,
L.
,
2018
, “
Effects of Structural Forms on Heat Transfer Performance of Two-Layer Microchannel Heat Sink
,”
J. Aeronaut. Power
,
33
(
3
), pp.
565
572
.10.13224/j.cnki.jasp.2018.03.007
7.
Jing
,
Z.
,
2015
, “
Flow and Heat Transfer Characteristics and Thermal Stress Analysis of Microchannel Heat Sink
,” M.S. dissertation, China University of Petroleum (East China), Qingdao, Shandong Province, China.
8.
Drofenik
,
U.
,
Stupar
,
A.
, and
Kolar
,
J. W.
,
2011
, “
Analysis of Theoretical Limits of Forced-Air Cooling Using Advanced Composite Materials With High Thermal Conductivities
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
1
(
4
), pp.
528
535
.10.1109/TCPMT.2010.2100730
9.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
10.
Chai
,
L.
,
Xia
,
G.
,
Zhou
,
M.
, and
Li
,
J.
,
2011
, “
Numerical Simulation of Fluid Flow and Heat Transfer in a Microchannel Heat Sink With Offset Fan-Shaped Reentrant Cavities in Sidewall
,”
Int. Commun. Heat Mass Transfer
,
38
(
5
), pp.
577
584
.10.1016/j.icheatmasstransfer.2010.12.037
11.
Hongtao
,
W.
,
2017
, “
Numerical Study of Flow and Heat Transfer Characteristics of Microchannel Heat Sink
,” M.S. dissertation, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, China.
12.
Xia
,
G.
,
Zhai
,
Y.
, and
Cui
,
Z.
,
2013
, “
Numerical Investigation of Thermal Enhancement in a Micro Heat Sink With Fan-Shaped Reentrant Cavities and Internal Ribs
,”
Appl. Therm. Eng.
,
58
(
1–2
), pp.
52
60
.10.1016/j.applthermaleng.2013.04.005
13.
Chai
,
L.
, and
Wang
,
L.
,
2018
, “
Thermal-Hydraulic Performance of Interrupted Microchannel Heat Sinks With Different Rib Geometries in Transverse Microchambers
,”
Int. J. Therm. Sci.
,
127
, pp.
201
212
.10.1016/j.ijthermalsci.2018.01.029
14.
Chunmei
,
X.
,
Yongping
,
C.
, and
Mingheng
,
S.
,
2008
, “
Numerical Simulation of Flow and Heat Transfer Characteristics of Non-Circular Microchannel Heat Sin
,”
Therm. Power Eng.
,
23
(
6
), pp.
640
644
.
15.
Xue
,
Y.
,
Kunpeng
,
L.
, and
Xiaojun
,
T.
,
2018
, “
Numerical Simulation Analysis of Heat Dissipation Capacity of High Heat Flux Density Heat Sink
,”
LASER Infrared
,
1
, pp.
52
55
.
16.
Xia
,
G. D.
,
Zhai
,
Y. L.
, and
Cui
,
Z. Z.
,
2013
, “
Characteristics of Entropy Generation and Heat Transfer in a Microchannel With Fan-Shaped Reentrant Cavities and Internal Ribs
,”
Sci. China Technol. Sci.
,
56
(
7
), pp.
1629
1635
.10.1007/s11431-013-5244-z
17.
Ahmed
,
H. E.
, and
Ahmed
,
M. I.
,
2015
, “
Optimum Thermal Design of Triangular, Trapezoidal and Rectangular Grooved Microchannel Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
66
, pp.
47
57
.10.1016/j.icheatmasstransfer.2015.05.009
18.
Minghui
,
Z.
,
2009
, “
Numerical Study on Flow and Heat Transfer Characteristics of Circular Microchannel Heat Sink
,”
Building Thermal Energy Ventilation and Air Conditioning,
28
(
1
), pp.
10
13
.
19.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2004
, “
Viscous Dissipation Effects in Microtubes and Microchannels
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3159
3169
.10.1016/j.ijheatmasstransfer.2004.02.017
20.
Hongwei
,
L.
,
2012
, “
Design and Numerical Study of Microchannel Heat Sink
,” M.S. dissertation, North China Electric Power University, Baoding, Hebei Province, China.
21.
Ping
,
L.
,
Di
,
Z.
, and
Yonghui
,
X.
,
2016
, “
Flow Structure and Heat Transfer of Non-Newtonian Fluids in Microchannel Heat Sinks With Dimples and Protrusions
,”
Appl. Therm. Eng.
,
94
, pp.
50
58
.10.1016/j.applthermaleng.2015.10.119
22.
Wei
,
L.
, and
Zhongshan
,
S.
,
2012
, “
Three-Dimensional Numerical Structure Optimization of Copper-Aluminum Microchannel Heat Sink
,”
J. Mech. Eng.
,
48
(
23
), pp.
102
109
.10.3901/JME.2012.23.102
23.
Wei
,
W.
,
Licheng
,
S.
, and
Hongtao
,
L.
,
2017
, “
Analysis of the Influence of Microchannel Shape on the Comprehensive Performance of Self-Similar Heat Sink
,”
Chem. Ind. Eng. Prog.
,
36
(
s1
), pp.
58
63
.10.16085/j.issn.1000-6613.2017-1465
24.
Guodong
,
X.
,
Lei
,
C.
, and
Jingzhi
,
Q.
,
2011
, “
Study on Fluid Flow and Heat Transfer Characteristics of Trapezoidal Silicon-Based Microchannel Heat Sink
,”
J. Beijing Univ. Technol.
,
37
(
7
), pp.
1079
1084
.
25.
Hung
,
T. C.
,
Huang
,
Y. X.
, and
Yan
,
W. M.
,
2013
, “
Thermal Performance Analysis of Porous-Microchannel Heat Sinks With Differ-Ent Configuration Designs
,”
Int. Commun. Heat Mass Transfer
,
66
(
6
), pp.
235
243
.10.1016/j.ijheatmasstransfer.2013.07.019
26.
Hong
,
F.
, and
Cheng
,
P.
,
2009
, “
Three Dimensional Numerical Analyses and Optimization of Offset Strip-Fin Microchannel Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
36
(
7
), pp.
651
656
.10.1016/j.icheatmasstransfer.2009.02.015
27.
Khadem, M. H., Shams, M., and Hossainpour, S.,
2009
, “Numerical Simulation of Roughness Effects on Flow and Heat Transfer in Microchannels at Slip Flow Regime,“
Int. Commun. Heat Mass Transfer
,
36
(1), pp. 69–77.10.1016/j.icheatmasstransfer.2008.10.009
28.
Yunyan
,
L.
, and
Chuanrong
,
H.
,
2009
,
Experimental Design and Data Processing
,
Chemical Industry Press
,
Beijing, China
.
29.
Haiying
,
T.
,
Guoqiang
,
Z.
, and
Ping
,
H.
,
2008
, “
Analysis of Orthogonal Experimental Design Examples
,”
Pharma Care Res.
,
8
(
1
), pp.
75
76
.
30.
Dongsheng
,
G.
,
Jianjun
,
S.
, and
Chenbo
,
M.
,
2015
, “
Orthogonal Test of Self-Pumping Mechanical Seal Based on Numerical Simulation
,”
J. Chem. Eng.
,
66
(
7
), pp.
2464
2473
.10.11949/j.issn.0438-1157.20150204
You do not currently have access to this content.