Abstract

Saturated vapor condensation on homogenous and heterogeneous subcooled walls is presented in this study by adopting a hybrid phase-change multiple-relaxation-time Lattice Boltzmann model. The effects of wall wettability on the condensation process, including droplets' growth, coalescence and falling, and the influence of vapor flow to condensation are investigated. The results demonstrate that the heat fluxes around the triple-phase contact lines are higher than that in other cold areas in homogeneous subcooled walls, which actually indicates the fact that filmwise condensation is preventing the continuous condensation process. Furthermore, the dropwise condensation can be formed more easily on the heterogeneous surface with a mixed surface wettability. At last, the dynamic process of condensation of continuous vapor flow is also investigated by considering the homogenous and heterogeneous subcooled surfaces. The results show that the heterogeneous surface with mixed wettability does not significantly contribute to the formation, growth of droplets, when compared to the homogeneous surface. It is expected that this study can bring more attention to simulate condensation using multiphase LBM for complex geometries in heat transfer community.

References

1.
Segal
,
Y.
,
Khain
,
A.
,
Pinsky
,
M.
, and
Sterkin
,
A.
,
2004
, “
Sensitivity of Raindrop Formation in Ascending Cloud Parcels to Cloud Condensation Nuclei and Thermodynamic Conditions
,”
Q. J. R. Meteorol. Soc.
,
130
(
597
), pp.
561
581
.10.1256/qj.02.168
2.
Kandlikar
,
S. G.
,
1999
, “
Handbook of Phase Change: Boiling and Condensation
,”
Multiphase Flow Handbook
, Philadelphia, P A.
3.
Chaudhry
,
H. N.
,
Hughes
,
B. R.
, and
Ghani
,
S. A.
,
2012
, “
A Review of Heat Pipe Systems for Heat Recovery and Renewable Energy Applications
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
2249
2259
.10.1016/j.rser.2012.01.038
4.
Kuo
,
W. S.
,
Lie
,
Y. M.
,
Hsieh
,
Y. Y.
, and
Lin
,
T. F.
,
2005
, “
Condensation Heat Transfer and Pressure Drop of Refrigerant R-410A Flow in a Vertical Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5205
5220
.10.1016/j.ijheatmasstransfer.2005.07.023
5.
Dalkilic
,
A. S.
, and
Wongwises
,
S.
,
2009
, “
Intensive Literature Review of Condensation Inside Smooth and Enhanced Tubes
,”
Int. J. Heat Mass Transfer
,
52
(
15–16
), pp.
3409
3426
.10.1016/j.ijheatmasstransfer.2009.01.011
6.
Ma
,
M.
,
Lu
,
J.
, and
Tryggvason
,
G.
,
2015
, “
Using Statistical Learning to Close Two-Fluid Multiphase Flow Equations for a Simple Bubbly System
,”
Phys. Fluids
,
27
(
9
), p.
092101
.10.1063/1.4930004
7.
Li
,
W.
,
Zhang
,
J.
,
Bai
,
G.
,
Xu
,
J-L.
,
Simon
,
T. W.
,
Li
,
J.
, and
Wei
,
J-J.
,
2016
, “
Numerical Simulation of Condensation for R410A in Horizontal Round and Flattened Minichannels
,”
ASME J. Heat Transfer
,
139
(
2
), p.
021501
.10.1115/1.4034812
8.
Cao
,
H.
, and
Li
,
J.-D.
,
2017
, “
Computational Fluid Dynamics Simulations of Convective Pure Vapor Condensation Inside Vertical Cylindrical Condensers
,”
ASME J. Heat Transfer
,
139
(
6
), p.
061503
.10.1115/1.4035711
9.
Wróblewski
,
W.
,
Dykas
,
S.
,
Gardzilewicz
,
A.
, and
Kolovratnik
,
M.
,
2009
, “
Numerical and Experimental Investigations of Steam Condensation in LP Part of a Large Power Turbine
,”
ASME J. Fluids Eng.
,
131
(
4
), p.
041301
.10.1115/1.3089544
10.
Li
,
J. D.
,
2013
, “
CFD Simulation of Water Vapour Condensation in the Presence of Non-Condensable Gas in Vertical Cylindrical Condensers
,”
Int. J. Heat Mass Transfer
,
57
(
2
), p.
708
.10.1016/j.ijheatmasstransfer.2012.10.051
11.
Riva
,
E. D.
, and
Col
,
D. D.
,
2012
, “
Numerical Simulation of Laminar Liquid Film Condensation in a Horizontal Circular Minichannel
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051019
.10.1115/1.4005710
12.
Rose
,
J.
,
2002
, “
Dropwise Condensation Theory and Experiment: A Review
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
216
(
2
), pp.
115
128
.10.1243/09576500260049034
13.
Kharangate
,
C. R.
, and
Mudawar
,
I.
,
2017
, “
Review of Computational Studies on Boiling and Condensation
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1164
1196
.10.1016/j.ijheatmasstransfer.2016.12.065
14.
Li
,
Q.
,
Luo
,
K. H.
,
Kang
,
Q. J.
,
He
,
Y. L.
,
Chen
,
Q.
, and
Liu
,
Q.
,
2016
, “
Lattice Boltzmann Methods for Multiphase Flow and Phase-Change Heat Transfer
,”
Prog. Energy Combust. Sci.
,
52
, pp.
62
105
.10.1016/j.pecs.2015.10.001
15.
Chen
,
L.
,
Kang
,
Q.
,
Mu
,
Y.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2014
, “
A Critical Review of the Pseudopotential Multiphase Lattice Boltzmann Model: Methods and Applications
,”
Int. J. Heat Mass Transfer
,
76
(
6
), pp.
210
236
.10.1016/j.ijheatmasstransfer.2014.04.032
16.
Zhang
,
R.
, and
Chen
,
H.
,
2003
, “
Lattice Boltzmann Method for Simulations of Liquid-Vapor Thermal Flows
,”
Phys. Rev. E
,
67
(
6
), p.
066711
.10.1103/PhysRevE.67.066711
17.
Gong
,
S.
, and
Cheng
,
P.
,
2013
, “
Lattice Boltzmann Simulation of Periodic Bubble Nucleation, Growth and Departure From a Heated Surface in Pool Boiling
,”
Int. J. Heat Mass Transfer
,
64
(
3
), pp.
122
132
.10.1016/j.ijheatmasstransfer.2013.03.058
18.
Gong
,
S.
, and
Cheng
,
P.
,
2017
, “
Direct Numerical Simulations of Pool Boiling Curves Including Heater's Thermal Responses and the Effect of Vapor Phase's Thermal Conductivity
,”
Int. Commun. Heat Mass Transfer
,
87
, pp.
61
71
.10.1016/j.icheatmasstransfer.2017.06.023
19.
Liu
,
X.
, and
Cheng
,
P.
,
2013
, “
Lattice Boltzmann Simulation of Steady Laminar Film Condensation on a Vertical Hydrophilic Subcooled Flat Plate
,”
Int. J. Heat Mass Transfer
,
62
(
1
), pp.
507
514
.10.1016/j.ijheatmasstransfer.2013.03.002
20.
Li
,
X.
, and
Cheng
,
P.
,
2017
, “
Lattice Boltzmann Simulations for Transition From Dropwise to Filmwise Condensation on Hydrophobic Surfaces With Hydrophilic Spots
,”
Int. J. Heat Mass Transfer
,
110
, pp.
710
722
.10.1016/j.ijheatmasstransfer.2017.03.033
21.
Lallemand
,
P.
, and Luo
,
L.-S.
,
2000
, “
Theory of the Lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability
,”
Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.
,
61
(
6 Pt A
), p.
6546
.10.1103/PhysRevE.61.6546
22.
Li
,
Q.
,
Zhou
,
P.
, and
Yan
,
H.
,
2017
, “
Improved Thermal Lattice Boltzmann Model for Simulation of Liquid-Vapor Phase Change
,”
Phys. Rev. E
,
96
(
6
), p.
063303
.10.1103/PhysRevE.96.063303
23.
Gan
,
Y.
,
Xu
,
A.
,
Zhang
,
G.
, and
Succi
,
S.
,
2015
, “
Discrete Boltzmann Modeling of Multiphase Flows: Hydrodynamic and Thermodynamic Non-Equilibrium Effects
,”
Soft Matter
,
11
(
26
), pp.
5336
5345
.10.1039/C5SM01125F
24.
Li
,
Q.
,
Kang
,
Q. J.
,
Francois
,
M. M.
,
He
,
Y. L.
, and
Luo
,
K. H.
,
2015
, “
Lattice Boltzmann Modeling of Boiling Heat Transfer: The Boiling Curve and the Effects of Wettability
,”
Int. J. Heat Mass Transfer
,
85
, pp.
787
796
.10.1016/j.ijheatmasstransfer.2015.01.136
25.
Shan
,
X.
, and
Chen
,
H.
,
1993
, “
Lattice Boltzmann Model for Simulating Flows With Multiple Phases and Components
,”
Phys. Rev. E. Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.
,
47
(
3
), pp.
1815
1819
.10.1103/PhysRevE.47.1815
26.
Li
,
Q.
,
Kang
,
Q. J.
,
Francois
,
M. M.
, and
Hu
,
A. J.
,
2016
, “
Lattice Boltzmann Modeling of Self-Propelled Leidenfrost Droplets on Ratchet Surfaces
,”
Soft Matter
,
12
(
1
), pp.
302
312
.10.1039/C5SM01353D
27.
Li
,
Q.
,
Zhou
,
P.
, and
Yan
,
H.
,
2016
, “
Pinning-Depinning Mechanism of the Contact Line During Evaporation on Chemically Patterned Surfaces: A Lattice Boltzmann Study
,”
Langmuir Acs J. Surf. Colloids
,
32
(
37
), p.
9389
.10.1021/acs.langmuir.6b01490
28.
Zhao
,
W.
,
Zhang
,
Y.
, and
Xu
,
B.
,
2019
, “
An Improved Pseudopotential Multi-Relaxation-Time Lattice Boltzmann Model for Binary Droplet Collision With Large Density Ratio
,”
Fluid Dyn. Res.
,
51
(
2
), p.
025510
.10.1088/1873-7005/aae443
29.
Zhao
,
W.
,
Zhang
,
Y.
,
Xu
,
B.
,
Li
,
P.
,
Wang
,
Z.
, and
Jiang
,
S.
,
2018
, “
Multiple-Relaxation-Time Lattice Boltzmann Simulation of Flow and Heat Transfer in Porous Volumetric Solar Receivers
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082003
.10.1115/1.4039775
30.
Shan
,
X.
, and
Chen
,
H.
,
1994
, “
Simulation of Nonideal Gases and Liquid-Gas Phase Transitions by the Lattice Boltzmann Equation
,”
Phys. Rev. E. Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.
,
49
(
4
), pp.
2941
2948
.10.1103/PhysRevE.49.2941
31.
Zhao
,
W.
,
Zhang
,
Y.
,
Shang
,
W.
,
Wang
,
Z.
,
Xu
,
B.
, and
Jiang
,
S.
,
2019
, “
Simulation of Droplet Impacting a Square Solid Obstacle in Microchannel With Different Wettability by Using High Density Ratio Pseudopotential Multiple-Relaxation-Time (MRT) Lattice Boltzmann Method (LBM)
,”
Can. J. Phys.
,
97
(
1
), pp.
93
113
.10.1139/cjp-2018-0126
32.
Yuan
,
P.
, and
Schaefer
,
L.
,
2006
, “
Equations of State in a Lattice Boltzmann Model
,”
Phys. Fluids
,
18
(
4
), p.
042101
.10.1063/1.2187070
33.
Li
,
Q.
, and
Luo
,
K. H.
,
2013
, “
Achieving Tunable Surface Tension in the Pseudopotential Lattice Boltzmann Modeling of Multiphase Flows
,”
Phys. Rev. E. Stat. Nonlinear Soft Matter Phys.
,
88
(
5
), p.
053307
.10.1103/PhysRevE.88.053307
34.
Liu
,
H.
,
Valocchi
,
A. J.
,
Zhang
,
Y.
, and
Kang
,
Q.
,
2013
, “
Phase-Field-Based Lattice Boltzmann Finite Difference Model for Simulating Thermocapillary Flows
,”
Phys. Rev. E. Stat. Nonlinear Soft Matter Phys.
,
87
(
1
), p.
013010
.10.1103/PhysRevE.87.013010
35.
Lee
,
T.
, and
Lin
,
C.-L.
,
2005
, “
A Stable Discretization of the Lattice Boltzmann Equation for Simulation of Incompressible Two-Phase Flows at High Density Ratio
,”
J. Comput. Phys.
,
206
(
1
), pp.
16
47
.10.1016/j.jcp.2004.12.001
36.
Law
,
C. K.
,
1982
, “
Recent Advances in Droplet Vaporization and Combustion
,”
Prog. Energy Combust. Sci.
,
8
(
3
), pp.
171
201
.10.1016/0360-1285(82)90011-9
37.
Safari
,
H.
,
Rahimian
,
M. H.
, and
Krafczyk
,
M.
,
2013
, “
Extended Lattice Boltzmann Method for Numerical Simulation of Thermal Phase Change in Two-Phase Fluid Flow
,”
Phys. Rev. E. Stat. Nonlinear Soft Matter Phys.
,
88
(
1
), p.
013304
.10.1103/PhysRevE.88.013304
38.
He
,
X.
,
Zou
,
Q.
,
Luo
,
L. S.
, and
Dembo
,
M.
,
1997
, “
Analytic Solutions of Simple Flows and Analysis of Nonslip Boundary Conditions for the Lattice Boltzmann BGK Model
,”
J. Stat. Phys.
,
87
(
1–2
), pp.
115
136
.10.1007/BF02181482
39.
Guo
,
Z.
,
Zheng
,
C.
, and
Shi
,
B.
,
2002
, “
Non-Equilibrium Extrapolation Method for Velocity and Pressure Boundary Conditions in the Lattice Boltzmann Method
,”
Chin. Phys.
,
11
(
4
), pp.
366
374
.10.1088/1009-1963/11/4/010
40.
Lou
,
Q.
,
Guo
,
Z.
, and
Shi
,
B.
,
2013
, “
Evaluation of Outflow Boundary Conditions for Two-Phase Lattice Boltzmann Equation
,”
Phys. Review E
,
87
(
6
), p.
063301
.10.1103/PhysRevE.87.063301
41.
Michio
,
Y.
,
Kunio
,
H.
,
Yasuo
,
M.
, and
Motokazu
,
U.
,
1985
, “
Fundamental Study of Laminar Film Condensation Heat Transfer on a Downward Horizontal Surface
,”
Int. J. Heat Mass Transfer
,
28
(
10
), pp.
1937
1944
.10.1016/0017-9310(85)90215-7
You do not currently have access to this content.