Abstract

Thermal stresses may be induced in a hot dry rock when a cold fluid is injected in the well. To study this problem, we look at the thermoelastic response of a hot rock that is suddenly cooled. The cooling is assumed to be either at a constant temperature or at a constant heat flux per unit depth. Our approach is to nondimensionalize the equations and perform a parametric study and look at the temperature distribution and the induced-thermal stresses. The results indicate that depending on the extent of cooling and the cooling time, thermal stresses can be induced. Numerical simulations on sandstone, with an initial uniform temperature of 473 K, are also carried out. The results show that if the cooling is due to the surface temperature maintained at 463 K (10 °C lower than the initial temperature of the hot rock), thermal stresses that are larger than the rock tensile strength could be induced. When the cooling is due to a constant surface heat flux, this temperature can be reached after about 777 days of cooling with a minimum value of a heat flux of −20 W/m.

References

1.
Vilarrasa
,
V.
, and
Laloui
,
L.
,
2016
, “
Impacts of Thermally Induced Stresses on Fracture Stability During Geological Storage of CO2
,”
Eighth Trondheim Conference on CO2 Capture, Transport and Storage
,
R.
Aarlien
,
N. A.
Rokke
, and
H. F.
Svendsen
, eds., Vol.
86
, Trodheim, Norway, pp.
411
419
.
2.
Murphy
,
H. D.
,
1978
, “
Thermal Stress Cracking and the Enhancement of Heat Extraction From Fractured Geothermal Reservoirs
,”
Proceedings of Geothermal Resources Council Meeting
, Hilo, HI, p.
19
.https://www.osti.gov/servlets/purl/6771724
3.
Finnie
,
I.
,
Cooper
,
G. A.
, and
Berlie
,
J.
,
1979
, “
Fracture Propagation in Rock by Transient Cooling
,”
Int. J. Rock Mech. Min. Sci.
,
16
(
1
), pp.
11
21
.10.1016/0148-9062(79)90771-X
4.
Irfan
,
M. A.
, and
Chapman
,
W.
,
2009
, “
Thermal Stresses in Radiant Tubes Due to Axial, Circumferential and Radial Temperature Distributions
,”
Appl. Therm. Eng.
,
29
(
10
), pp.
1913
1920
.10.1016/j.applthermaleng.2008.08.021
5.
Tarasovs
,
S.
, and
Ghassemi
,
A.
,
2011
, “
Propagation of a System of Cracks Under Thermal Stress
,”
Proceedings of the 45th Rock Mechanics/Geomechanics Symposium
, San Francisco, CA, June 26–29.https://www.onepetro.org/conference-paper/ARMA-11-558
6.
Tarasovs
,
S.
, and
Ghassemi
,
A.
,
2012
, “
On the Role of Thermal Stress in Reservoir Stimulation
,”
Proceedings of 37th Workshop on Geothermal Reservoir Engineering
, Stanford, CA, Jan. 30–Feb. 1, p.
6
.https://www.researchgate.net/publication/267846418_On_the_role_of_thermal_stress_in_reservoir_stimulation
7.
Ghassemi
,
A.
,
Tarasovs
,
A.
, and
Cheng
,
A. D.-H.
,
2005
, “
Integral Equation Solution of Heat Extraction Induced Thermal Stress in Enhanced Geothermal Reservoirs
,”
Int. J. Numer. Anal. Methods Geomech.
,
29
(
8
), pp.
829
844
.10.1002/nag.440
8.
Tao
,
Q.
, and
Ghassemi
,
A.
,
2010
, “
Poro-Thermoelastic Borehole Stress Analysis for Determination of the In Situ Stress and Rock Strength
,”
Geothermics
,
39
(
3
), pp.
250
259
.10.1016/j.geothermics.2010.06.004
9.
Tarasovs
,
S.
, and
Ghassemi
,
A.
,
2014
, “
Self-Similarity and Scaling of Thermal Shock Fractures
,”
Phys. Rev. E
,
90
(
1
), p.
012403
.10.1103/PhysRevE.90.012403
10.
Ghassemi
,
A.
, and
Zhang
,
Q.
,
2004
, “
A Transient Fictitious Stress Boundary Element Method for Porothermoelastic Media
,”
Eng. Anal. Boundary Elem.
,
28
(
11
), pp.
1363
1373
.10.1016/j.enganabound.2004.05.003
11.
Enayatpour
,
S.
, and
Patzek
,
T.
,
2013
, “
Thermal Shock in Reservoir Rock Enhances the Hydraulic Fracturing of Gas Shales
,”
Proceedings of the Unconventional Resources Technology Conference
, Denver, Colorado, Aug. 12–14, Paper No. URTEC-1620617-MS.10.1190/urtec2013-153
12.
Kim
,
K.
,
Kemeny
,
J.
, and
Nickerson
,
M.
,
2014
, “
Effect of Rapid Thermal Cooling on Mechanical Rock Properties
,”
Rock Mech. Rock Eng.
,
47
(
6
), pp.
2005
2019
.10.1007/s00603-013-0523-3
13.
Browning
,
J.
,
Meredith
,
P.
, and
Gudmundsson
,
A.
,
2016
, “
Cooling-Dominated Cracking in Thermally Stressed Volcanic Rocks
,”
Geophys. Res. Lett.
,
43
(
16
), pp.
8417
8425
.10.1002/2016GL070532
14.
Roy
,
P.
,
Morris
,
J. P.
,
Walsh
,
S. D. C.
,
Iyer
,
J.
, and
Carroll
,
S.
,
2018
, “
Effect of Thermal Stress on Wellbore Integrity During CO2 Injection
,”
Int. J. Greenhouse Gas Control
,
77
, pp.
14
26
.10.1016/j.ijggc.2018.07.012
15.
Xu
,
H.
,
Peng
,
N.
,
Ma
,
T.
, and
Yang
,
B.
,
2018
, “
Investigation of Thermal Stress of Cement Sheath for Geothermal Wells During Fracturing
,”
Energies
,
11
(
10
), p.
2581
.10.3390/en11102581
16.
Zhang
,
S. K.
,
Huang
,
Z. W.
,
Li
,
G. S.
,
Wu
,
X. G.
,
Peng
,
C.
, and
Zhang
,
W. P.
,
2018
, “
Numerical Analysis of Transient Conjugate Heat Transfer and Thermal Stress Distribution in Geothermal Drilling With High-Pressure Liquid Nitrogen Jet
,”
Appl. Therm. Eng.
,
129
, pp.
1348
1357
.10.1016/j.applthermaleng.2017.10.042
17.
Wu
,
B. S.
,
Liu
,
T. L.
,
Zhang
,
X.
,
Wu
,
B. L.
,
Jeffrey
,
R. G.
, and
Bunger
,
A. P.
,
2018
, “
A Transient Analytical Model for Predicting Wellbore/Reservoir Temperature and Stresses During Drilling With Fluid Circulation
,”
Energies
,
11
(
1
), p.
42
.10.3390/en11010042
18.
Ngo
,
D. T.
, and
Pellet
,
F. L.
,
2018
, “
Numerical Modeling of Thermally-Induced Fractures in a Large Rock Salt Mass
,”
J. Rock Mech. Geotech. Eng.
,
10
(
5
), pp.
844
855
.10.1016/j.jrmge.2018.04.008
19.
Zhang
,
S. K.
,
Huang
,
Z. W.
,
Zhang
,
H. Y.
,
Guo
,
Z. Q.
,
Wu
,
X. G.
,
Wang
,
T. Y.
,
Zhang
,
C. C.
, and
Xiong
,
C.
,
2018
, “
Experimental Study of Thermal-Crack Characteristics on Hot Dry Rock Impacted by Liquid Nitrogen Jet
,”
Geothermics
,
76
, pp.
253
260
.10.1016/j.geothermics.2018.08.002
20.
Phuoc
,
T. X.
,
Massoudi
,
M.
,
Wang
,
P.
, and
McKoy
,
M. L.
,
2019
, “
Heat Losses Associated With the Upward Flow of Air, Water, CO2 in Geothermal Production Wells
,”
Int. J. Heat Mass Transfer
,
132
, pp.
249
258
.10.1016/j.ijheatmasstransfer.2018.11.168
21.
Fung
,
Y. C.
, and
Tong
,
P.
,
2001
,
Classical and Computational Solid Mechanics
,
World Scientific Publishing
,
Hackensack, NJ
.
22.
Boley
,
B. A.
, and
Weiner
,
J. H.
,
1997
,
Theory of Thermal Stresses
,
Dover Publications
,
New York
.
23.
Parkus
,
H.
,
2012
,
Thermoelasticity
,
Springer Science & Business Media
,
New York
.
24.
Suhubi
,
E. S.
,
1975
, “
Thermoelastic Solids
,”
Continuum Physics
,
A. C.
Eringen
, ed., Vol.
2
,
Academic Press
,
New York
, pp.
173
281
.
25.
Carlson
,
D. E.
,
1972
, “
Linear Thermoealsticity
,”
Encyclopedia of Physics
,
Springer-Verlag
,
New York
, Vol.
VIa/2
, pp.
297
345
.
26.
Schon
,
J. H.
,
1996
,
Physical Properties of Rocks
,
Elsevier Science Inc
.,
New York
.
27.
Hua
,
W.
,
Dong
,
S. M.
,
Fan
,
Y.
,
Pan
,
X.
, and
Wang
,
Q. Y.
,
2017
, “
Investigation on the Correlation of Mode II Fracture Toughness of Sandstone With Tensile Strength
,”
Eng. Fract. Mech.
,
184
, pp.
249
258
.10.1016/j.engfracmech.2017.09.009
28.
Lu
,
C.
,
Sun
,
Q.
,
Zhang
,
W. Q.
,
Geng
,
J. S.
,
Qi
,
Y. M.
, and
Lu
,
L. L.
,
2017
, “
The Effect of High Temperature on Tensile Strength of Sandstone
,”
Appl. Therm. Eng.
,
111
, pp.
573
579
.10.1016/j.applthermaleng.2016.09.151
29.
Yaseen
,
M.
,
Zemmouri
,
J.
, and
Shahrour
,
I.
, “
The Geomaterials Fracture by Thermal Process
,”
Proceedings of the 39th Workshop on Geothermal Reservoir Engineering
, Stanford University, Stanford, CA, Feb. 24–29, p.
6
.https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2014/Yaseen.pdf
30.
Shen
,
B.
,
Ko
,
T. Y.
,
Lee
,
S.
,
Kim
,
J.
,
Kim
,
T. K.
,
Lee
,
J.
,
Kim
,
H. M.
,
Park
,
E. S.
,
Wuttke
,
M. W.
, and
Backers
,
T.
, “
Rock Fracture Propagation Due to Thermal and Hydraulic Loadings
,”
Proceedings of 13th IACMAG Conference
, Melbourne, Australia, Sept. 9–13, p. 7.https://publications.csiro.au/rpr/download?pid=csiro:EP105229&dsid=DS1
31.
Griffiths
,
L.
,
Lengline
,
O.
,
Heap
,
M. J.
,
Baud
,
P.
, and
Schmittbuhl
,
J.
,
2018
, “
Thermal Cracking in Westerly Granite Monitored Using Direct Wave Velocity, Coda Wave Interferometry, and Acoustic Emissions
,”
J. Geophys. Res.: Solid Earth
,
123
, pp.
2246
2261
.10.1002/2017JB015191
32.
Glover
,
P. W. J.
,
Baud
,
P.
,
Darot
,
M.
,
Meredith
,
P. G.
,
Boon
,
S. A.
,
LeRavalec
,
M.
,
Zoussi
,
S.
, and
Reuschle
,
T.
,
1995
, “
Alpha/Beta Phase Transition in Quartz Monitored Using Acoustic Emissions
,”
Geophys. J. Int.
,
120
(
3
), pp.
775
782
.10.1111/j.1365-246X.1995.tb01852.x
33.
Meredith
,
P. G.
,
Knight
,
K. S.
,
Boon
,
S. A.
, and
Wood
,
I. G.
,
2001
, “
The Microscopic Origin of Thermal Cracking in Rocks: An Investigation by Simultaneous Time-of-Flight Neutron Diffraction and Acoustic Emission Monitoring
,”
Geophys. Res. Lett.
,
28
(
10
), pp.
2105
2108
.10.1029/2000GL012470
You do not currently have access to this content.