Abstract

Nongray gas radiation calculations are conducted for four three-dimensional benchmarks using line-by-line (LBL) integration with the up-to-date high-resolution spectroscopic database HITEMP 2010. The radiative transfer equation (RTE) is solved using the finite volume method (FVM) over each wavenumber interval of the spectrum. A detailed mesh quality analysis assured the mesh independence of the solution. Accurate results for distributions of volumetric radiative heat source term and wall radiative heat flux are provided for four cases: (i) an isothermal pure water vapor medium at 1000 K; (ii) an isothermal and nonhomogeneous H2O–N2 mixture at 1000 K; (iii) a nonisothermal and homogeneous CO2–H2O–N2 mixture; and (iv) a nonisothermal and nonhomogeneous CO2–H2O–N2 mixture. These data can be useful to assess the accuracy of gas radiative property models.

References

1.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
, 3rd ed.,
Academic Press
,
Oxford, UK
.
2.
Howell
,
J. R.
,
Meng
,
M. P.
, and
Siegel
,
R.
,
2016
,
Thermal Radiation Heat Transfer
, 6th ed.,
CRC Press
,
Boca Raton, FL
.
3.
Bordbar
,
M. H.
,
Węcel
,
G.
, and
Hyppänen
,
T.
,
2014
, “
A Line by Line Based Weighted Sum of Gray Gases Model for Inhomogeneous CO2–H2O Mixture in Oxy-Fired Combustion
,”
Combust. Flame
,
161
(
9
), pp.
2435
2445
.10.1016/j.combustflame.2014.03.013
4.
Alberti
,
M.
,
Weber
,
R.
, and
Mancini
,
M.
,
2016
, “
Re-Creating Hottel's Emissivity Charts for Water Vapor and Extending Them to 40 Bar Pressure Using HITEMP-2010 Data Base
,”
Combust. Flame
,
169
, pp.
141
153
.10.1016/j.combustflame.2016.04.013
5.
Wang
,
C.
,
Modest
,
M. F.
, and
He
,
B.
,
2016
, “
Full-Spectrum k-Distribution Look-Up Table for Nonhomogeneous Gas–Soot Mixtures
,”
J. Quant. Spectrosc. Radiat. Transfer
,
176
, pp.
129
136
.10.1016/j.jqsrt.2016.02.007
6.
Bordbar
,
H.
, and
Hyppanen
,
T.
,
2018
, “
Line by Line Based Band Identification for Non-Gray Gas Modeling With a Banded Approach
,”
Int. J. Heat Mass Transfer
,
127
, pp.
870
884
.10.1016/j.ijheatmasstransfer.2018.06.093
7.
Dorigon
,
L. J.
,
Duciak
,
G.
,
Brittes
,
R.
,
Cassol
,
F.
,
Galarça
,
M.
, and
França
,
F. H. R.
,
2013
, “
WSGG Correlations Based on HITEMP2010 for Computation of Thermal Radiation in Non-Isothermal, Non-Homogeneous H2O/CO2 Mixtures
,”
Int. J. Heat Mass Transfer
,
64
, pp.
863
873
.10.1016/j.ijheatmasstransfer.2013.05.010
8.
Cassol
,
F.
,
Brittes
,
R.
,
França
,
F. H.
, and
Ezekoye
,
O. A.
,
2014
, “
Application of the Weighted-Sum-of-Gray-Gases Model for Media Composed of Arbitrary Concentrations of H2O, CO2 and Soot
,”
Int. J. Heat Mass Transfer
,
79
, pp.
796
806
.10.1016/j.ijheatmasstransfer.2014.08.032
9.
Modest
,
M. F.
, and
Zhang
,
H.
,
2002
, “
The Full-Spectrum Correlated-k Distribution for Thermal Radiation From Molecular Gas-Particulate Mixtures
,”
ASME J. Heat Transfer
,
124
(
1
), pp.
30
38
.10.1115/1.1418697
10.
Zhang
,
H.
, and
Modest
,
M. F.
,
2002
, “
A Multi-Scale Full-Spectrum Correlated-k Distribution for Radiative Heat Transfer in Inhomogeneous Gas Mixtures
,”
J. Quant. Spectrosc. Radiat. Transfer
,
73
(
2–5
), pp.
349
360
.10.1016/S0022-4073(01)00220-5
11.
Modest
,
M. F.
, and
Riazzi
,
R. J.
,
2005
, “
Assembly of Full-Spectrum k-Distributions From a Narrow-Band Database; Effects of Mixing Gases, Gases and Nongray Absorbing Particles, and Mixtures With Nongray Scatterers in Nongray Enclosures
,”
J. Quant. Spectrosc. Radiat. Transfer
,
90
(
2
), pp.
169
189
.10.1016/j.jqsrt.2004.03.007
12.
Chu
,
H.
,
Liu
,
F.
, and
Zhou
,
H.
,
2012
, “
Calculations of Gas Radiation Heat Transfer in a Two-Dimensional Rectangular Enclosure Using the Line-by-Line Approach and the Statistical Narrow-Band Correlated-k Model
,”
Int. J. Therm. Sci.
,
59
, pp.
66
74
.10.1016/j.ijthermalsci.2012.04.003
13.
Chu
,
H.
,
Consalvi
,
J.-L.
,
Gu
,
M.
, and
Liu
,
F.
,
2017
, “
Calculations of Radiative Heat Transfer in an Axisymmetric Jet Diffusion Flame at Elevated Pressures Using Different Gas Radiation Models
,”
J. Quant. Spectrosc. Radiat. Transfer
,
197
, pp.
12
25
.10.1016/j.jqsrt.2017.02.008
14.
Centeno
,
F. R.
,
Brittes
,
R.
,
França
,
F. H. R.
, and
Ezekoye
,
O. A.
,
2015
, “
Evaluation of Gas Radiation Heat Transfer in a 2D Axisymmetric Geometry Using the Line-by-Line Integration and WSGG Models
,”
J. Quant. Spectrosc. Radiat. Transfer
,
156
, pp.
1
11
.10.1016/j.jqsrt.2015.01.015
15.
Centeno
,
F. R.
,
Brittes
,
R.
,
Rodrigues
,
L. G.
,
Coelho
,
F. R.
, and
França
,
F. H.
,
2018
, “
Evaluation of the WSGG Model Against Line-by-Line Calculation of Thermal Radiation in a Non-Gray Sooting Medium Representing an Axisymmetric Laminar Jet Flame
,”
Int. J. Heat Mass Transfer
,
124
, pp.
475
483
.10.1016/j.ijheatmasstransfer.2018.02.040
16.
Schenker
,
G. N.
, and
Keller
,
B.
,
1995
, “
Line-by-Line Calculations of the Absorption of Infrared Radiation by Water Vapor in a Box-Shaped Enclosure Filled With Humid Air
,”
Int. J. Heat Mass Transfer
,
38
(
17
), pp.
3127
3134
.10.1016/0017-9310(95)00098-T
17.
Liu
,
F.
,
1999
, “
Numerical Solutions of Three-Dimensional Non-Grey Gas Radiative Transfer Using the Statistical Narrow-Band Model
,”
ASME J. Heat Transfer
,
121
(
1
), p.
200
.10.1115/1.2825944
18.
Bordbar
,
H.
,
Maximov
,
A.
, and
Hyppanen
,
T.
,
2019
, “
Improved Banded Method for Spectral Thermal Radiation in Participating Media With Spectrally Dependent Wall Emittance
,”
Appl. Energy
,
235
, pp.
1090
1105
.10.1016/j.apenergy.2018.11.033
19.
Porter
,
R.
,
Liu
,
F.
,
Pourkashanian
,
M.
,
Williams
,
A.
, and
Smith
,
D.
,
2010
, “
Evaluation of Solution Methods for Radiative Heat Transfer in Gaseous Oxy-Fuel Combustion Environments
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
14
), pp.
2084
2094
.10.1016/j.jqsrt.2010.04.028
20.
Bordbar
,
M. H.
, and
Hyppanen
,
T.
,
2015
, “
The Correlation Based Zonal Method and Its Application to the Back Pass Channel of Oxy/Air-Fired CFB Boiler
,”
Appl. Therm. Eng.
,
78
, pp.
351
363
.10.1016/j.applthermaleng.2014.12.046
21.
Rothman
,
L.
,
Gordon
,
I.
,
Barber
,
R.
,
Dothe
,
H.
,
Gamache
,
R.
,
Goldman
,
A.
,
Perevalov
,
V.
,
Tashkun
,
S.
, and
Tennyson
,
J.
,
2010
, “
HITEMP, the High-Temperature Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
15
), pp.
2139
2150
.10.1016/j.jqsrt.2010.05.001
22.
Raithby
,
G.
, and
Chui
,
E.
,
1990
, “
A Finite Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media
,”
ASME J. Heat Transfer
,
112
(
2
), pp.
415
423
.10.1115/1.2910394
23.
McGrattan
,
K. B.
,
Hostikka
,
S.
,
McDermott
,
R.
,
Floyd
,
J.
,
Vanella
,
M.
, and
Vanella
,
M.
,
2018
,
Fire Dynamics Simulator Technical Reference Guide
, 6th ed., Vol.
1
,
NIST Special Publication
,
Gaithersburg, MD
.
24.
McGrattan
,
K.
,
McDermott
,
R.
,
Floyd
,
J.
,
Hostikka
,
S.
,
Forney
,
G.
, and
Baum
,
H.
,
2012
, “
Computational Fluid Dynamics Modelling of Fire
,”
Int. J. Comput. Fluid Dyn.
,
26
(
6–8
), pp.
349
361
.10.1080/10618562.2012.659663
25.
Coelho
,
F. R.
, and
França
,
F. H. R.
,
2018
, “
WSGG Correlations Based on HITEMP2010 for Gas Mixtures of H2O and CO2 in High Total Pressure Conditions
,”
Int. J. Heat Mass Transfer
,
127
, pp.
105
114
.10.1016/j.ijheatmasstransfer.2018.07.075
You do not currently have access to this content.