Abstract

Accounting for the fact that thermal conductivity of fluid is much less than the thermal conductivity of solid in most of the porous medium-related applications, this study applies perturbation approach in analyzing forced convection through a parallel plate channel under local thermal nonequilibirum (LTNE) condition by denoting the thermal conductivity ratio of fluid to solid as the small parameter, suggesting leading order solutions to solve the two-equation energy model, by incorporating Darcy model and Brinkman model for large porous medium shape factor, respectively, in the presence of heat generation in both fluid and solid. This study provides important fluid temperatures, solid temperatures, and heat transfer coefficient approximations, which enables further analysis on the fluid and solid temperature gradient at the boundary and hence delineate the roles of thermal conductivities and interfacial heat transfer in LNTE mode. The results signify competition between the heat conduction from the wall through fluid conduction and interfacial heat transfer from solid to fluid in the thermal boundary layer. The effect of thermal boundary layer is intensified with the attendant increase in porous medium shape factor and heat generation in solid. The results for Brinkman model also establish conditions for temperature bifurcations to take place whereby in such cases, an increase in viscous dissipation in fluid attributes to the detachment of thermal boundary layer as the porous medium shape factor, S decreases. The phenomenon caused by insufficient convection rate to overcome viscous dissipation bears much resemblance to the separation point in the momentum boundary layer.

References

1.
Hetsroni
,
G.
,
Gurevich
,
M.
, and
Rozenblit
,
R.
,
2006
, “
Sintered Porous Medium Heat Sink for Cooling of High-Power Mini-Devices
,”
Int. J. Heat Fluid Flow
,
27
(
2
), pp.
259
266
.10.1016/j.ijheatfluidflow.2005.08.005
2.
Singh
,
R.
,
Akbarzadeh
,
A.
, and
Mochizuki
,
M.
,
2009
, “
Sintered Porous Heat Sink for Cooling of High-Powered Microprocessors for Server Applications
,”
Int. J. Heat Mass Transfer
,
52
(
9–10
), pp.
2289
2299
.10.1016/j.ijheatmasstransfer.2008.11.016
3.
Mahjoob
,
S.
, and
Vafai
,
K.
,
2009
, “
Analytical Characterization of Heat Transport Through Biological Media Incorporating Hyperthermia Treatment
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1608
1618
.10.1016/j.ijheatmasstransfer.2008.07.038
4.
Wang
,
K.
,
Tavakkoli
,
F.
,
Wang
,
S.
, and
Vafai
,
K.
,
2015
, “
Analysis and Analytical Characterization of Bioheat Transfer During Radiofrequency Ablation
,”
J. Biomech
,
48
(
6
), pp.
930
940
.10.1016/j.jbiomech.2015.02.023
5.
Ouyang
,
X.-L.
,
Jiang
,
P.-X.
, and
Xu
,
R.-N.
,
2013
, “
Thermal Boundary Conditions of Local Thermal Non-Equilibrium Model for Convection Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
60
, pp.
31
40
.10.1016/j.ijheatmasstransfer.2012.12.017
6.
Chen
,
G. M.
, and
Tso
,
C. P.
,
2011
, “
A Two-Equation Model for Thermally Developing Forced Convection in Porous Medium With Viscous Dissipation
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5406
5414
.10.1016/j.ijheatmasstransfer.2011.08.002
7.
Ouyang
,
X. L.
,
Vafai
,
K.
, and
Jiang
,
P. X.
,
2013
, “
Analysis of Thermally Developing Flow in Porous Media Under Local Thermal Non-Equilibrium Conditions
,”
Int. J. Heat Mass Transfer
,
67
, pp.
768
775
.10.1016/j.ijheatmasstransfer.2013.08.056
8.
Gandomkar
,
A.
, and
Gray
,
K. E.
,
2018
, “
Local Thermal Non-Equilibrium in Porous Media With Heat Conduction
,”
Int. J. Heat Mass Transfer
,
124
, pp.
1212
1216
.10.1016/j.ijheatmasstransfer.2018.04.011
9.
Ouyang
,
X.-L.
,
Xu
,
R.-N.
, and
Jiang
,
P.-X.
,
2017
, “
Three-Equation Local Thermal Non-Equilibrium Model for Transient Heat Transfer in Porous Media: The Internal Thermal Conduction Effect in the Solid Phase
,”
Int. J. Heat Mass Transfer
,
115
, pp.
1113
1124
.10.1016/j.ijheatmasstransfer.2017.07.088
10.
Lee
,
D. Y.
, and
Vafai
,
K.
,
1999
, “
Analytical Characterization and Conceptual Assessment of Solid and Fluid Temperature Differentials in Porous Media
,”
Int. J. Heat Mass Transfer
,
42
(
3
), pp.
423
435
.10.1016/S0017-9310(98)00185-9
11.
Kim
,
S. J.
, and
Kim
,
D.
,
1999
, “
Forced Convection in Microstructures for Electronic Equipment Cooling
,”
ASME J. Heat Transfer
,
121
(
3
), pp.
639
645
.10.1115/1.2826027
12.
Yang
,
K.
, and
Vafai
,
K.
,
2010
, “
Analysis of Temperature Gradient Bifurcation in Porous Media—An Exact Solution
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4316
4325
.10.1016/j.ijheatmasstransfer.2010.05.060
13.
Chen
,
G. M.
, and
Tso
,
C. P.
,
2011
, “
Forced Convection With Viscous Dissipation Using a Two-Equation Model in a Channel Filled by a Porous Medium
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
1791
1804
.10.1016/j.ijheatmasstransfer.2010.12.037
14.
Nakayama
,
A.
,
Koyama
,
H.
, and
Kuwahara
,
F.
,
1988
, “
An Analysis on Forced Convection in a Channel Filled With a Brinkman-Darcy Porous Medium: Exact and Approximate Solutions
,”
Wärme Stoffübertragung
,
23
(
5
), pp.
291
295
.10.1007/BF01001055
15.
Deen
,
W. M.
,
2012
,
Analysis of Transport Phenomena
,
Oxford University Press
,
Oxford, UK
.
16.
Hwang
,
G. J.
, and
Chao
,
C. H.
,
1994
, “
Heat Transfer Measurement and Analysis for Sintered Porous Channels
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
456
464
.10.1115/1.2911418
17.
Kim
,
S. J.
,
Kim
,
D.
, and
Lee
,
D. Y.
,
2000
, “
On the Local Thermal Equilibrium in Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
43
(
10
), pp.
1735
1748
.10.1016/S0017-9310(99)00259-8
You do not currently have access to this content.