Abstract

The phenomenon of natural convection is investigated in three-dimensional (3D) cavities with four adiabatic walls and one hot wall. The surface opposite to the hot wall is either a wall (closed cavity) at a lower constant temperature or is open to ambient at a lower temperature (open cavity). It is pointed out here that not only overall heat transfer is important, the distribution of local heat transfer is also important. To quantify the uniformity of heat transfer distribution, the ratio of maximum to average heat transfer is calculated for various Rayleigh numbers as well as inclination angles for open and closed cavities. A significant difference in the local heat transfer profile along the hot surface of the closed cavity in comparison to that in open cavity for small inclination angle (especially at higher values of Rayleigh number) is noted. However, the profile is remarkably similar in the case of vertical cavities. For inclined closed cavities, there is a buoyancy component of the flow acceleration normal to the hot and cold wall, which is absent in the case of vertical cavities. For lower inclinations, this component brings the three-dimensionality in the flow field and leads to the differences in the flow patterns. The fluid striking the cold wall in the case of the closed cavity causes significantly different flow patterns that, in turn, lead to nonuniform local heat transfer. To explain the flow behavior, iso-surfaces, stream ribbons, and the Y-components of the flow velocity are plotted at different surfaces of the closed cavity.

References

1.
Chan
,
Y. L.
, and
Tien
,
C. L.
,
1985
, “
A Numerical Study of Two-Dimensional Natural Convection in Square Open Cavities
,”
Numer. Heat Transfer
,
8
(
1
), pp.
65
80
. 10.1080/01495728508961842
2.
Chan
,
Y. L.
, and
Tien
,
C. L.
,
1985
, “
A Numerical Study of Two-Dimensional Laminar Natural Convection in Shallow Open Cavities
,”
Int. Commun. Heat Mass Transfer
,
28
(
3
), pp.
603
612
.10.1016/0017-9310(85)90182-6
3.
Mohammad
,
A. A.
,
1995
, “
Natural Convection in Open Cavities and Slots
,”
Numer. Heat Transfer
,
27
, pp.
705
716
.10.1080/10407789508913727
4.
Chakroun
,
W.
,
Elsayed
,
M. M.
, and
Al-Fahed
,
S. F.
,
1997
, “
Experimental Measurements of Heat Transfer Coefficient in a Partially/Fully Open Tilted Cavity
,”
ASME J. Sol. Energy Eng.
,
119
(
4
), pp.
298
303
.10.1115/1.2888036
5.
Polat
,
O.
, and
Bilgen
,
E.
,
2002
, “
Laminar Natural Convection in Inclined Open Shallow Cavities
,”
Int. J. Therm. Sci.
,
41
(
4
), pp.
360
368
.10.1016/S1290-0729(02)01326-1
6.
Polat
,
O.
, and
Bilgen
,
E.
,
2003
, “
Conjugate Heat Transfer in Inclined Open Shallow Cavities
,”
Int. J. Heat Mass Transfer
,
46
(
9
), pp.
1563
1573
.10.1016/S0017-9310(02)00427-1
7.
Bilgen
,
E.
, and
Oztop
,
H.
,
2005
, “
Natural Convection Heat Transfer in Partially Open Inclined Square Cavities
,”
Int. J. Heat Mass Transfer
,
48
(
8
), pp.
1470
1479
.10.1016/j.ijheatmasstransfer.2004.10.020
8.
Bilgen
,
E.
, and
Muftuoglu
,
A.
,
2008
, “
Natural Convection in an Open Square Cavity With Slots
,”
Int. Commun. Heat Mass Transfer
,
35
(
8
), pp.
896
900
.10.1016/j.icheatmasstransfer.2008.05.001
9.
Saxena
,
A.
, and
Singh
,
S.
,
2015
, “
Analysis of the Radiative and Convective Heat Losses From a Two-Dimensional Open Square Cavity
,”
23rd National and 1st International ISHMT-ASTFE Heat and Mass Transfer Conference
, Thiruvananthapuram, India, Dec. 17–20, Paper No. IHMTC2015-512.
10.
Saxena
,
A.
,
Kishor
,
V.
,
Singh
,
S.
, and
Srivastava
,
A.
,
2018
, “
Experimental and Numerical Study on the Onset of Natural Convection in a Cavity Open at the Top
,”
Phys. Fluids
,
30
(
5
), p.
057102
.10.1063/1.5025092
11.
Montiel-Gonzalez
,
M.
,
Hinojosa
,
J. F.
,
Villafan-Vidales
,
H. I.
,
Bautista-Orozco
,
A.
, and
Estrada
,
C. A.
,
2015
, “
Theoretical and Experimental Study of Natural Convection With Surface Thermal Radiation in a Side Open Cavity
,”
Appl. Therm. Eng.
,
75
, pp.
1176
1186
.10.1016/j.applthermaleng.2014.05.047
12.
Saxena
,
A.
,
Singh
,
S.
, and
Srivastava
,
A.
,
2018
, “
Flow and Heat Transfer Characteristic of an Open Cubic Cavity With Different Inclinations
,”
Phys. Fluids
,
30
(
8
), p.
087101
.10.1063/1.5040698
13.
Hinojosa
,
J. F.
,
Alvarez
,
G.
, and
Estrada
,
C. A.
,
2006
, “
Three-Dimensional Numerical Simulation of the Natural Convection in an Open Tilted Cubic Cavity
,”
Rev. Mex. Fis.
,
52
, pp.
111
119
.
14.
Fontana
,
E.
,
Capeletto
,
C. A.
,
da Silva
,
A.
, and
Mariani
,
V. C.
,
2013
, “
Three-Dimensional Analysis of Natural Convection in a Partially Open Cavity With Internal Heat Source
,”
Int. J. Heat Mass Transfer
,
61
, pp.
525
542
.10.1016/j.ijheatmasstransfer.2013.02.047
15.
Al-Rashed
,
A. A. A. A.
,
Kolsi
,
L.
,
Hussein
,
A. K.
,
Hassen
,
W.
,
Aichouni
,
M.
, and
Borjini
,
M. N.
,
2017
, “
Numerical Study of Three-Dimensional Natural Convection and Entropy Generation in a Cubical Cavity With Partially Active Vertical Walls
,”
Case Stud. Therm. Eng.
,
10
, pp.
100
110
.10.1016/j.csite.2017.05.003
16.
Ravnik
,
J.
,
Skerget
,
L.
, and
Zunic
,
Z.
,
2008
, “
Velocity–Vorticity Formulation for 3D Natural Convection in an Inclined Enclosure by BEM
,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4517
4527
.10.1016/j.ijheatmasstransfer.2008.01.018
17.
Yang
,
G.
, and
Wu
,
J. Y.
,
2016
, “
Effects of Natural Convection, Wall Thermal Conduction, and Thermal Radiation on Heat Transfer Uniformity at a Heated Plate Located at the Bottom of a Three-Dimensional Rectangular Enclosure
,”
Numer. Heat Transfer Part A
,
69
(
6
), pp.
589
606
.10.1080/10407782.2015.1090238
18.
Tric
,
E.
,
Labrosse
,
G.
, and
Betrouni
,
M.
,
2000
, “
A First Incursion Into the 3D Structure of Natural Convection of Air in a Differentially Heated Cubic Cavity, From Accurate Numerical Solutions
,”
Int. J. Heat Mass Transfer
,
43
(
21
), pp.
4043
4056
.10.1016/S0017-9310(00)00037-5
19.
Wright
,
J. L.
,
Jin
,
H.
,
Hollands
,
K. G. T.
, and
Naylor
,
D.
,
2006
, “
Flow Visualization of Natural Convection in a Tall, Air-Filled Vertical Cavity
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
889
904
.10.1016/j.ijheatmasstransfer.2005.06.045
20.
Turan
,
O.
,
Poole
,
R. J.
, and
Chakraborty
,
N.
,
2012
, “
Influences of Boundary Conditions on Laminar Natural Convection in Rectangular Enclosures With Differentially Heated Side Walls
,”
Int. J. Heat Fluid Flow
,
33
(
1
), pp.
131
146
.10.1016/j.ijheatfluidflow.2011.10.009
21.
Rincón-Casado
,
A.
,
Sánchez de la Flor
,
F. J.
,
Chacón Vera
,
E.
, and
Sánchez Ramos
,
J.
,
2017
, “
New Natural Convection Heat Transfer Correlations in Enclosures for Building Performance Simulation
,”
Eng. Appl. Comput. Fluid Mech.
,
11
(
1
), pp.
340
356
.10.1080/19942060.2017.1300107
22.
Wang
,
P.
,
Zhang
,
Y.
, and
Guo
,
Z.
,
2017
, “
Numerical Study of Three-Dimensional Natural Convection in a Cubical Cavity at High Rayleigh Numbers
,”
Int. J. Heat Mass Transfer
,
113
, pp.
217
228
.10.1016/j.ijheatmasstransfer.2017.05.057
23.
Juárez
,
J. O.
,
Hinojosa
,
J. F.
,
Xamán
,
J. P.
, and
Tello
,
M. P.
,
2011
, “
Numerical Study of Natural Convection in an Open Cavity Considering Temperature-Dependent Fluid Properties
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2184
2197
.10.1016/j.ijthermalsci.2011.05.017
24.
Saury
,
D.
,
Rouger
,
N.
,
Djanna
,
F.
, and
Penot
,
F.
,
2011
, “
Natural Convection in an Air-Filled Cavity: Experimental Results at Large Rayleigh Numbers
,”
Int. Commun. Heat Mass Transfer
,
38
(
6
), pp.
679
687
.10.1016/j.icheatmasstransfer.2011.03.019
25.
Srivastava
,
A.
,
Phukan
,
A.
,
Panigrahi
,
P. K.
, and
Muralidhar
,
K.
,
2004
, “
Imaging of a Convective Field in a Rectangular Cavity Using Interferometry, Schlieren, and Shadowgraph
,”
Opt. Lasers Eng.
,
42
(
4
), pp.
469
485
.10.1016/j.optlaseng.2004.03.003
26.
Manz
,
H.
,
2003
, “
Numerical Simulation of Heat Transfer by Natural Convection in Cavities of Facade Elements
,”
Energy Build.
,
35
(
3
), pp.
305
311
.10.1016/S0378-7788(02)00088-9
27.
Lo
,
D. C.
,
Young
,
D. L.
, and
Tsai
,
C. C.
,
2007
, “
High Resolution of 2D Natural Convection in a Cavity by the DQ Method
,”
J. Comput. Appl. Math.
,
203
(
1
), pp.
219
236
.10.1016/j.cam.2006.03.021
28.
Bairi
,
A.
,
2008
, “
Nusselt–Rayleigh Correlations for Design of Industrial Elements: Experimental and Numerical Investigation of Natural Convection in Tilted Square Air-Filled Enclosures
,”
Energy Conserv. Manage.
,
49
, pp.
771
782
.10.1016/j.enconman.2007.07.030
29.
Huelsz
,
G.
, and
Rechtman
,
R.
,
2013
, “
Heat Transfer Due to Natural Convection in an Inclined Square Cavity Using the Lattice Boltzmann Equation Method
,”
Int. J. Therm. Sci.
,
65
, pp.
111
119
.10.1016/j.ijthermalsci.2012.09.009
30.
Abu-Nada
,
E.
, and
Chamkha
,
A. J.
,
2014
, “
Mixed Convection Flow of a Nanofluid in a Lid-Driven Cavity With a Wavy Wall
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
36
47
.10.1016/j.icheatmasstransfer.2014.07.013
31.
Chamkha
,
A. J.
, and
Ismael
,
M. A.
,
2014
, “
Natural Convection in Differentially Heated Partially Porous Layered Cavities Filled With a Nanofluid
,”
Numer. Heat Transfer Part A
,
65
(
11
), pp.
1089
1113
.10.1080/10407782.2013.851560
32.
Ben-Nakhi
,
A.
, and
Chamkha
,
A. J.
,
2006
, “
Effect of Length and Inclination of a Thin Fin on Natural Convection in a Square Enclosure
,”
Numer. Heat Transfer Part A
,
50
(
4
), pp.
381
399
.10.1080/10407780600619907
33.
Kasaeian
,
A.
,
Daneshazarian
,
R.
,
Mahian
,
O.
,
Kolsi
,
L.
,
Chamkha
,
A. J.
,
Wongwises
,
S.
, and
Pop
,
I.
,
2017
, “
Nanofluid Flow and Heat Transfer in Porous Media: A Review of the Latest Developments
,”
Int. J. Heat Mass Transfer
,
107
, pp.
778
791
.10.1016/j.ijheatmasstransfer.2016.11.074
34.
Ismael
,
M. A.
,
Pop
,
I.
, and
Chamkha
,
A. J.
,
2014
, “
Mixed Convection in a Lid-Driven Square Cavity With Partial Slip
,”
Int. J. Therm. Sci.
,
82
, pp.
47
61
.10.1016/j.ijthermalsci.2014.03.007
35.
Chamkha
,
A. J.
,
2002
, “
Double-Diffusive Convection in a Porous Enclosure With Cooperating Temperature and Concentration Gradients and Heat Generation or Absorption Effects
,”
Numer. Heat Transfer A
,
41
(
1
), pp.
65
87
.10.1080/104077802317221447
36.
Parvin
,
S.
,
Nasrin
,
R.
,
Alim
,
M. A.
,
Hossain
,
N. F.
, and
Chamkha
,
A. J.
,
2012
, “
Thermal Conductivity Variation on Natural Convection Flow of Water–Alumina Nanofluid in an Annulus
,”
Int. J. Heat Mass Transfer
,
55
(
19–20
), pp.
5268
5274
.10.1016/j.ijheatmasstransfer.2012.05.035
37.
Parvin
,
S.
, and
Chamkha
,
A. J.
,
2014
, “
An Analysis on Free Convection Flow, Heat Transfer and Entropy Generation in an Odd-Shaped Cavity Filled With Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
54
, pp.
8
17
.10.1016/j.icheatmasstransfer.2014.02.031
38.
Selimefendigil
,
F.
,
Öztop
,
H. F.
, and
Chamkha
,
A. J.
,
2016
, “
MHD Mixed Convection and Entropy Generation of Nanofluid Filled Lid-Driven Cavity Under the Influence of Inclined Magnetic Fields Imposed to Its Upper and Lower Diagonal Triangular Domains
,”
J. Magn. Magn. Mater.
,
406
, pp.
266
281
.10.1016/j.jmmm.2016.01.039
39.
Ben-Nakhi
,
A.
, and
Chamkha
,
A. J.
,
2007
, “
Conjugate Natural Convection in a Square Enclosure With the Inclined Thin Fin of Arbitrary Length
,”
Int. J. Therm. Sci.
,
46
(
5
), pp.
467
478
.10.1016/j.ijthermalsci.2006.07.008
40.
Ismael
,
M. A.
,
Armaghani
,
T.
, and
Chamkhac
,
A. J.
,
2015
, “
Conjugate Heat Transfer and Entropy Generation in a Cavity Filled With a Nanofluid-Saturated Porous Media and Heated by a Triangular Solid
,”
J. Taiwan Inst. Chem. Eng.
,
59
, pp.
138
151
.10.1016/j.jtice.2015.09.012
41.
Chamkha
,
A. J.
,
Hussain
,
S. H.
, and
Abd-Amer
,
Q. R.
,
2011
, “
Mixed Convection Heat Transfer of Air Inside a Square Vented Cavity With a Heated Horizontal Square Cylinder
,”
Numer. Heat Transfer Part A
,
59
(
1
), pp.
58
79
.10.1080/10407782.2011.541216
42.
Nasrin
,
R.
,
Alim
,
M. A.
, and
Chamkha
,
A. J.
,
2012
, “
Combined Convection Flow in Triangular Wavy Chamber Filled With Water-CuO Nanofluid: Effect of Viscosity Models
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1226
1236
.10.1016/j.icheatmasstransfer.2012.06.005
43.
Chamkha
,
A. J.
, and
Ismael
,
M. A.
,
2013
, “
Conjugate Heat Transfer in a Porous Cavity Filled With Nanofluids and Heated by a Triangular Thick Wall
,”
Int. J. Therm. Sci.
,
67
, pp.
135
151
.10.1016/j.ijthermalsci.2012.12.002
44.
Mansour
,
M. A.
,
Bakeir
,
M. A.
, and
Chamkha
,
A. J.
,
2012
, “
Natural Convection Inside a C-Shaped Nanofluid-Filled Enclosure With Localized Heat Sources
,”
Int. J. Numer. Methods Heat Fluid Flow
,
24
(
8
), pp.
1954
1978
. 10.1108/HFF-06-2013-0198
45.
Basak
,
T.
, and
Chamkha
,
A. J.
,
2012
, “
Heatline Analysis on Natural Convection for Nanofluids Confined Within Square Cavities With Various Thermal Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5526
5543
.10.1016/j.ijheatmasstransfer.2012.05.025
46.
Chamkha
,
A. J.
, and
Al-Naser
,
H.
,
2002
, “
Hydromagnetic Double-Diffusive Convection in a Rectangular Enclosure With Opposing Temperature and Concentration Gradients
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2465
2483
.10.1016/S0017-9310(01)00344-1
47.
Nasrin
,
R.
,
Alim
,
M. A.
, and
Chamkha
,
A. J.
,
2014
, “
Modeling of Mixed Convective Heat Transfer Utilizing Nanofluid in a Double Lid-Driven Chamber With Internal Heat Generation
,”
Int. J. Numer. Methods Heat Fluid Flow
,
24
(
1
), pp.
36
57
.10.1108/HFF-11-2011-0239
48.
Chamkha
,
A. J.
, and
Al-Naser
,
H.
,
2001
, “
Double-Diffusive Convection in an Inclined Porous Enclosure With Opposing Temperature and Concentration Gradients
,”
Int. J. Therm. Sci.
,
40
(
3
), pp.
227
244
.10.1016/S1290-0729(00)01213-8
49.
Oztop
,
H. F.
,
Abu-Nada
,
E.
,
Varol
,
Y.
, and
Chamkha
,
A.
,
2011
, “
Natural Convection in Wavy Enclosures With Volumetric Heat Sources
,”
Int. J. Therm. Sci.
,
50
(
4
), pp.
502
514
.10.1016/j.ijthermalsci.2010.10.015
50.
Chamkha
,
A. J.
,
El-Aziz
,
M. M. A.
, and
Ahmed
,
S. E.
,
2012
, “
Hydromagnetic Double-Diffusive Convection in a Rectangular Enclosure With Linearly Heated and Concentrated Wall(s) in the Presence of Heat Generation/Absorption Effects
,”
Prog. Comput. Fluid Dyn.
,
12
(
6
), pp.
400
414
.10.1504/PCFD.2012.049812
51.
Ben-Cheikh
,
N.
,
Chamkha
,
A. J.
,
Ben-Beya
,
B.
, and
Lili
,
T.
,
2013
, “
Natural Convection of Water-Based Nanofluids in a Square Enclosure With Non-Uniform Heating of the Bottom Wall
,”
J. Mod. Phys.
,
4
(
2
), pp.
147
159
.10.4236/jmp.2013.42021
52.
Basak
,
T.
,
Roy
,
S.
, and
Chamkha
,
A. J.
,
2012
, “
A Peclet Number Based Analysis of Mixed Convection for Lid-Driven Porous Square Cavities With Various Heating of Bottom Wall
,”
Int. Commun. Heat Mass Transfer
,
39
(
5
), pp.
657
664
.10.1016/j.icheatmasstransfer.2012.03.022
53.
Chamkha
,
A. J.
,
Hussain
,
S. H.
,
Ali
,
F. H.
, and
Shaker
,
A. A.
,
2012
, “
Conduction-Combined Forced and Natural Convection in a Lid-Driven Parallelogram-Shaped Enclosure Divided by a Solid Partition
,”
Prog. Comput. Fluid Dyn.
,
12
(
5
), pp.
309
321
.10.1504/PCFD.2012.049101
54.
Chamkha
,
A. J.
,
Mansour
,
M. A.
, and
Ahmed
,
S. E.
,
2010
, “
Double-Diffusive Natural Convection in Inclined Finned Triangular Porous Enclosures in the Presence of Heat Generation/Absorption Effects
,”
Heat Mass Transfer
,
46
(
7
), pp.
757
768
.10.1007/s00231-010-0622-6
55.
Fusegi
,
T.
,
Hyun
,
J. M.
,
Kuwahara
,
K.
, and
Farouk
,
B.
,
1991
, “
A Numerical Study of Three-Dimensional Natural Convection in a Differentially Heated Cubical Enclosure
,”
Int. J. Heat Mass Transfer
,
34
(
6
), pp.
1543
1557
.10.1016/0017-9310(91)90295-P
You do not currently have access to this content.