Abstract

Nanoparticle heating due to laser irradiation is of great interest in electronic, aerospace, and biomedical applications. This paper presents a coupled electromagnetic-heat transfer model to predict the temperature distribution of multilayer copper nanoparticle packings on a glass substrate. It is shown that heat transfer within the nanoparticle packing is dominated by the interfacial thermal conductance between particles when the interfacial thermal conductance constant, GIC, is greater than 20 MW/m2K, but that for lower GIC values, thermal conduction through the air around the nanoparticles can also play a role in the overall heat transfer within the nanoparticle system. The coupled model is used to simulate heat transfer in a copper nanoparticle packing used in a typical microscale selective laser sintering (μ-SLS) process with an experimentally measured particle size distribution and layer thickness. The simulations predict that the nanoparticles will reach a temperature of 730 ± 3 K for a laser irradiation of 2.6 kW/cm2 and 1304 ± 23 K for a laser irradiation of 6 kW/cm2. These results are in good agreement with the experimentally observed laser-induced sintering and melting thresholds for copper nanoparticle packing on glass substrates.

References

1.
Ko
,
S. H.
,
Pan
,
H.
,
Grigoropoulos
,
C. P.
,
Luscombe
,
C. K.
,
Fréchet
,
J. M.
, and
Poulikakos
,
D.
,
2007
, “
All-Inkjet-Printed Flexible Electronics Fabrication on a Polymer Substrate by Low-Temperature High-Resolution Selective Laser Sintering of Metal Nanoparticles
,”
Nanotechnol.
,
18
(
34
), p.
345202
.10.1088/0957-4484/18/34/345202
2.
Hu
,
A.
,
Guo
,
J. Y.
,
Alarifi
,
H.
,
Patane
,
G.
,
Zhou
,
Y.
,
Compagnini
,
G.
, and
Xu
,
C. X.
,
2010
, “
Low Temperature Sintering of Ag Nanoparticles for Flexible Electronics Packaging
,”
Appl. Phys. Lett.
,
97
(
15
), p.
153117
.10.1063/1.3502604
3.
Roy
,
N.
,
Yuksel
,
A.
, and
Cullinan
,
M.
,
2016
, “
Design and Modeling of a Microscale Selective Laser Sintering System
,”
ASME
Paper No. MSEC2016-8569, V003T08A002. 10.1115/MSEC2016-8569
4.
Ahmmed
,
K. M.
,
Grambow
,
C.
, and
Kietzig
,
A. M.
,
2014
, “
Fabrication of Micro/Nano Structures on Metals by Femtosecond Laser Micromachining
,”
Micromachines
,
5
(
4
), pp.
1219
1253
.10.3390/mi5041219
5.
Link
,
S.
,
Burda
,
C.
,
Nikoobakht
,
B.
, and
El-Sayed
,
M. A.
,
2000
, “
Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses
,”
J. Phys. Chem. B
,
104
(
26
), pp.
6152
6163
.10.1021/jp000679t
6.
Takami
,
A.
,
Kurita
,
H.
, and
Koda
,
S.
,
1999
, “
Laser-Induced Size Reduction of Noble Metal Particles
,”
J. Phys. Chem. B
,
103
(
8
), pp.
1226
1232
.10.1021/jp983503o
7.
Mafuné
,
F.
,
Kohno
,
J. Y.
,
Takeda
,
Y.
, and
Kondow
,
T.
,
2001
, “
Dissociation and Aggregation of Gold Nanoparticles Under Laser Irradiation
,”
J. Phys. Chem. B
,
105
(
38
), pp.
9050
9056
.10.1021/jp0111620
8.
Kelly
,
K. L.
,
Coronado
,
E.
,
Zhao
,
L. L.
, and
Schatz
,
G. C.
,
2003
, “
The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment
,”
J. Phys. Chem. B
,
107
, pp.
668
677
.10.1021/jp026731y
9.
Ray
,
P. C.
,
2010
, “
Size and Shape Dependent Second Order Nonlinear Optical Properties of Nanomaterials and Their Application in Biological and Chemical Sensing
,”
Chem. Rev.
,
110
(
9
), pp.
5332
5365
.10.1021/cr900335q
10.
Yurkov
,
G. Y.
,
Fionov
,
A. S.
,
Koksharov
,
Y. A.
,
Koleso
,
V. V.
, and
Gubin
,
S. P.
,
2007
, “
Electrical and Magnetic Properties of Nanomaterials Containing Iron or Cobalt Nanoparticles
,”
Inorg. Mater.
,
43
(
8
), pp.
834
844
.10.1134/S0020168507080055
11.
Noguez
,
C.
,
2007
, “
Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment
,”
J. Phys. Chem. C
,
111
(
10
), pp.
3806
3819
.10.1021/jp066539m
12.
Quinten
,
M.
,
Leitner
,
A.
,
Krenn
,
J. R.
, and
Aussenegg
,
F. R.
,
1998
, “
Electromagnetic Energy Transport Via Linear Chains of Silver Nanoparticles
,”
Opt. Lett.
,
23
(
17
), pp.
1331
1333
.10.1364/OL.23.001331
13.
Maier
,
S. A.
,
Brongersma
,
M. L.
,
Kik
,
P. G.
, and
Atwater
,
H. A.
,
2002
, “
Observation of Near-Field Coupling in Metal Nanoparticle Chains Using Far-Field Polarization Spectroscopy
,”
Phys. Rev. B
,
65
(
19
), p.
193408
.10.1103/PhysRevB.65.193408
14.
Yuksel
,
A.
,
Cullinan
,
M.
, and
Murthy
,
J.
,
2017
, “
Polarization Effect on Out of Plane Configured Nanoparticle Packing
,”
ASME
Paper No. MSEC2017-3075, V002T01A036.10.1115/MSEC2017-3075
15.
Yuksel
,
A.
,
Cullinan
,
M.
, and
Murthy
,
J.
,
2017
, “
Thermal Energy Transport Below the Diffraction Limit in Close-Packed Metal Nanoparticles
,”
ASME
Paper No. HT2017-4968, V002T13A005.10.1115/HT2017-4968
16.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
(
2
), pp.
793
818
.10.1063/1.1524305
17.
Bulgakova
,
N. M.
,
Stoian
,
R.
,
Rosenfeld
,
A.
,
Hertel
,
I. V.
,
Marine
,
W.
, and
Campbell
,
E. E. B.
,
2005
, “
A General Continuum Approach to Describe Fast Electronic Transport in Pulsed Laser Irradiated Materials: The Problem of Coulomb Explosion
,”
Appl. Phys. A
,
81
(
2
), pp.
345
356
.10.1007/s00339-005-3242-0
18.
Kanavin
,
A. P.
,
Smetanin
,
I. V.
,
Isakov
,
V. A.
,
Afanasiev
,
Y. V.
,
Chichkov
,
B. N.
,
Wellegehausen
,
B.
,
Nolte
,
S.
,
Momma
,
C.
, and
Tünnermann
,
A.
,
1998
, “
Heat Transport in Metals Irradiated by Ultrashort Laser Pulses
,”
Phys. Rev. B
,
57
(
23
), pp.
14698
14703
.10.1103/PhysRevB.57.14698
19.
Ekici
,
O.
,
Harrison
,
R. K.
,
Durr
,
N. J.
,
Eversole
,
D. S.
,
Lee
,
M.
, and
Ben-Yakar
,
A.
,
2008
, “
Thermal Analysis of Gold Nanorods Heated With Femtosecond Laser Pulses
,”
J. Phys. D: Appl. Phys.
,
41
(
18
), p.
185501
.10.1088/0022-3727/41/18/185501
20.
Wang
,
Y.
,
Ruan
,
X.
, and
Roy
,
A. K.
,
2012
, “
Two-Temperature Nonequilibrium Molecular Dynamics Simulation of Thermal Transport Across Metal-Nonmetal Interfaces
,”
Phys. Rev. B
,
85
(
20
), p.
205311
.10.1103/PhysRevB.85.205311
21.
Jiang
,
L.
, and
Tsai
,
H. L.
,
2005
, “
Improved Two-Temperature Model and Its Application in Ultrashort Laser Heating of Metal Films
,”
ASME J. Heat Transfer
,
127
(
10
), pp.
1167
1173
.10.1115/1.2035113
22.
Pustovalov
,
V. K.
,
2005
, “
Theoretical Study of Heating of Spherical Nanoparticle in Media by Short Laser Pulses
,”
Chem. Phys.
,
308
(
1–2
), pp.
103
108
.10.1016/j.chemphys.2004.08.005
23.
Ho
,
J. R.
,
Grigoropoulos
,
C. P.
, and
Humphrey
,
J. A. C.
,
1995
, “
Computational Study of Heat Transfer and Gas Dynamics in the Pulsed Laser Evaporation of Metals
,”
J. Appl. Phys.
,
78
(
7
), pp.
4696
4709
.10.1063/1.359817
24.
Evans
,
W.
,
Prasher
,
R.
,
Fish
,
J.
,
Meakin
,
P.
,
Phelan
,
P.
, and
Keblinski
,
P.
,
2008
, “
Effect of Aggregation and Interfacial Thermal Resistance on Thermal Conductivity of Nanocomposites and Colloidal Nanofluids
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1431
1438
.10.1016/j.ijheatmasstransfer.2007.10.017
25.
Timofeeva
,
E. V.
,
Gavrilov
,
A. N.
,
McCloskey
,
J. M.
,
Tolmachev
,
Y. V.
,
Sprunt
,
S.
,
Lopatina
,
L. M.
, and
Selinger
,
J. V.
,
2007
, “
Thermal Conductivity and Particle Agglomeration in Alumina Nanofluids: Experiment and Theory
,”
Phys. Rev. E
,
76
(
6
), p.
061203
.10.1103/PhysRevE.76.061203
26.
Garg
,
R.
,
Galvin
,
J.
,
Li
,
T.
, and
Pannala
,
S.
,
2012
, “
Open-Source MFIX-DEM Software for Gas–Solids Flows: Part I—Verification Studies
,”
Powder Technol.
,
220
, pp.
122
137
.10.1016/j.powtec.2011.09.019
27.
Yuksel
,
A.
, and
Cullinan
,
M.
,
2016
, “
Modeling of Nanoparticle Agglomeration and Powder Bed Formation in Microscale Selective Laser Sintering Systems
,”
Addit. Manuf.
,
12
, pp.
204
215
.10.1016/j.addma.2016.07.002
28.
Yuksel
,
A.
,
Edward
,
T. Y.
,
Cullinan
,
M.
, and
Murthy
,
J.
,
2017
, “
Analysis of Near-Field Thermal Energy Transfer Within the Nanoparticles
,”
SPIE
Paper No. 10.1117/12.2274158.10.1117/12.2274158
29.
Yuksel
,
A.
,
Edward
,
T. Y.
,
Cullinan
,
M.
, and
Murthy
,
J.
,
2019
, “
Effect of Particle Size Distribution on Near-Field Thermal Energy Transfer Within the Nanoparticle Packings
,”
J. Photon. Energy
,
9
(
03
), p.
1
.10.1117/1.JPE.9.032707
30.
Yuksel
,
A.
,
Yu
,
E. T.
,
Cullinan
,
M.
, and
Murthy
,
J.
,
2018
, “
Heat Transfer Modeling of Nanoparticle Packings on a Substrate
,”
ASME
Paper No. IMECE2018-88642, V08BT10A050.10.1115/IMECE2018-88642
31.
Yuksel
,
A.
,
Edward
,
T. Y.
,
Murthy
,
J.
, and
Cullinan
,
M.
,
2017
, “
Effect of Substrate and Nanoparticle Spacing on Plasmonic Enhancement in Three-Dimensional Nanoparticle Structures
,”
J. Micro Nano-Manuf.
,
5
(
4
), p.
040903
.10.1115/1.4037770
32.
COMSOL
,
2012
, “
RF Module User's Guide
,” COMSOL,
Burlington, MA
.
33.
Zhang
,
Z. M.
,
2007
, Nano/Microscale Heat Transfer (No. Sirsi) i9780071436748), McGraw-Hill Education, New York.
34.
Warrier
,
P.
, and
Teja
,
A.
,
2011
, “
Effect of Particle Size on the Thermal Conductivity of Nanofluids Containing Metallic Nanoparticles
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
247
.10.1186/1556-276X-6-247
35.
Roy
,
N. K.
,
Yuksel
,
A.
, and
Cullinan
,
M. A.
,
2015
, “
μ-SLS of Metals: Physical and Thermal Characterization of Cu-Nanopowders
,”
Solid Freeform Fabrication Conference (SFF)
, Austin, TX, Aug. 10–12, pp.
7
9
.https://sffsymposium.engr.utexas.edu/sites/default/files/2015/2015-63-Roy.pdf
36.
Roy
,
N. K.
,
Dibua
,
O. G.
,
Jou
,
W.
,
He
,
F.
,
Jeong
,
J.
,
Wang
,
Y.
, and
Cullinan
,
M. A.
,
2018
, “
A Comprehensive Study of the Sintering of Copper Nanoparticles Using Femtosecond, Nanosecond, and Continuous Wave Lasers
,”
J. Micro Nano-Manuf.
,
6
(
1
), p.
010903
.10.1115/1.4038455
37.
Yuksel
,
A.
,
Edward
,
T. Y.
,
Cullinan
,
M.
, and
Murthy
,
J.
,
2018
, “
Uncertainty Analysis of Near-Field Thermal Energy Transfer Within Nanoparticle Packing
,”
17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
, IEEE, SanDiego, CA, pp.
46
50
.10.1109/ITHERM.2018.8419492
38.
Wilson
,
O. M.
,
Hu
,
X.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2002
, “
Colloidal Metal Particles as Probes of Nanoscale Thermal Transport in Fluids
,”
Phys. Rev. B
,
66
(
22
), p.
224301
.10.1103/PhysRevB.66.224301
39.
Merabia
,
S.
,
Shenogin
,
S.
,
Joly
,
L.
,
Keblinski
,
P.
, and
Barrat
,
J. L.
,
2009
, “
Heat Transfer From Nanoparticles: A Corresponding State Analysis
,”
Proc. Natl. Acad. Sci.
,
106
(
36
), pp.
15113
15118
.10.1073/pnas.0901372106
40.
Dibua
,
O. G.
,
Yuksel
,
A.
,
Roy
,
N. K.
,
Foong
,
C. S.
, and
Cullinan
,
M.
,
2018
, “
Nanoparticle Sintering Model: Simulation and Calibration Against Experimental Data
,”
J. Micro Nano-Manuf.
,
6
(
4
), p.
041004
.10.1115/1.4041668
You do not currently have access to this content.