Abstract

The core of high-temperature gas-cooled reactor is a dense pebble bed of random packing filled with monosized fuel spheres. Subcell radiation model (SCM) is a generic analytical approach to calculate effective thermal conductivity (ETC) of thermal radiation. For the packed bed of monosized spheres operated in various conditions, it is proven that the SCM is still applicable in the particle size ranges of 1.2–60 mm and temperature ranges of 0–1200 °C. Based on the SCM, radiation-to-conduction ratio ξ is presented and radiation becomes an essential part at ξ>0.1 for the accurate evaluation. For the beds of nonoverlapping clumped-sphere particles, the model combining with discrete element method (DEM) and SCM is presented to study the heat transfer behaviors, including effects of particle shape, emissivity distribution and pebble flow with transient heat transfer. For the experimental nuclear pebble beds, the results of SCM are in good agreement with the empirical correlation and accord well with the experimental data under high temperature range.

References

1.
Gao
,
Z.
, and
Shi
,
L.
,
2002
, “
Thermal Hydraulic Calculation of the HTR-10 for the Initial and Equilibrium Core
,”
Nucl. Eng. Des.
,
218
(
1–3
), pp.
51
64
.10.1016/S0029-5493(02)00198-X
2.
Zhang
,
Z.
,
Dong
,
Y.
,
Li
,
F.
,
Zhang
,
Z.
,
Wang
,
H.
,
Huang
,
X.
,
Li
,
H.
,
Liu
,
B.
,
Wu
,
X.
,
Wang
,
H.
,
Diao
,
X.
,
Zhang
,
H.
, and
Wang
,
J.
,
2016
, “
The Shandong Shidao Bay 200 MWe High-Temperature Gas-Cooled Reactor Pebble-Bed Module (HTR-PM) Demonstration Power Plant: An Engineering and Technological Innovation
,”
Engineering
,
2
(
1
), pp.
112
118
.10.1016/J.ENG.2016.01.020
3.
Demkowicz
,
P. A.
,
Liu
,
B.
, and
Hunn
,
J. D.
,
2019
, “
Coated Particle Fuel: Historical Perspectives and Current Progress
,”
J. Nucl. Mater.
,
515
, pp.
434
450
.10.1016/j.jnucmat.2018.09.044
4.
Irwanto
,
D.
, and
Obara
,
T.
,
2013
, “
Decay Heat Removal Without Forced Cooling on a Small Simplified PBR With an Accumulative Fuel Loading Scheme
,”
Ann. Nucl. Energy
,
60
, pp.
383
395
.10.1016/j.anucene.2013.05.022
5.
Jiang
,
S.
,
Tu
,
J.
,
Yang
,
X.
, and
Gui
,
N.
,
2019
, “
A Review of Pebble Flow Study for Pebble Bed High Temperature Gas-Cooled Reactor
,”
Exp. Comput. Multiphase Flow
,
1
(
3
), pp.
159
176
.10.1007/s42757-019-0006-1
6.
Wakao
,
N.
, and
Kato
,
K.
,
1969
, “
Effective Thermal Conductivity of Packed Beds
,”
J. Chem. Eng. Jpn.
,
2
(
1
), pp.
24
33
.10.1252/jcej.2.24
7.
Nasr
,
K.
,
Viskanta
,
R.
, and
Ramadhyani
,
S.
,
1994
, “
An Experimental Evaluation of the Effective Thermal Conductivities of Packed Beds at High Temperatures
,”
ASME J. Heat Transfer
,
116
(
4
), pp.
829
837
.10.1115/1.2911455
8.
Earnshaw
,
J. W.
,
Londry
,
F. A.
, and
Gierszewski
,
P. J.
,
1998
, “
The Effective Thermal Conductivity of a Bed of 1.2-mm-Diam Lithium Zirconate Spheres in Helium
,”
Fusion Technol.
,
33
(
1
), pp.
31
37
.10.13182/FST98-A13
9.
Fillion
,
M.-H.
,
Côté
,
J.
, and
Konrad
,
J.-M.
,
2011
, “
Thermal Radiation and Conduction Properties of Materials Ranging From Sand to Rock-Fill
,”
Can. Geotech. J.
,
48
(
4
), pp.
532
542
.10.1139/t10-093
10.
Rousseau
,
P.
,
Du Toit
,
C.
,
Van Antwerpen
,
W.
, and
Van Antwerpen
,
H.
,
2014
, “
Separate Effects Tests to Determine the Effective Thermal Conductivity in the PBMR HTTU Test Facility
,”
Nucl. Eng. Des.
,
271
, pp.
444
458
.10.1016/j.nucengdes.2013.12.015
11.
Wu
,
Y.
,
Ren
,
C.
,
Li
,
R.
,
Yang
,
X.
,
Tu
,
J.
, and
Jiang
,
S.
,
2018
, “
Measurement on Effective Thermal Diffusivity and Conductivity of Pebble Bed Under Vacuum Condition in High Temperature Gas-Cooled Reactor
,”
Prog. Nucl. Energy
,
106
, pp.
195
203
.10.1016/j.pnucene.2018.01.014
12.
Kunii
,
D.
, and
Smith
,
J.
,
1960
, “
Heat Transfer Characteristics of Porous Rocks
,”
AIChE J.
,
6
(
1
), pp.
71
78
.10.1002/aic.690060115
13.
Breitbach
,
G.
, and
Barthels
,
H.
,
1980
, “
The Radiant Heat Transfer in the High Temperature Reactor Core After Failure of the Afterheat Removal Systems
,”
Nucl. Technol.
,
49
(
3
), pp.
392
399
.10.13182/NT80-A17687
14.
Chen
,
J. C.
, and
Churchill
,
S. W.
,
1963
, “
Radiant Heat Transfer in Packed Beds
,”
AIChE J.
,
9
(
1
), pp.
35
41
.10.1002/aic.690090108
15.
Laubitz
,
M.
,
1959
, “
Thermal Conductivity of Powders
,”
Can. J. Phys.
,
37
(
7
), pp.
798
808
.10.1139/p59-086
16.
Vortmeyer
,
D.
,
1979
, “
Wärmestrahlung in Dispersen Feststoffsystemen
,”
Chem. Ing. Tech.
,
51
(
9
), pp.
839
851
.10.1002/cite.330510904
17.
Gusarov
,
A. V.
,
2019
, “
Statistical Approach to Radiative Transfer in the Heterogeneous Media of Thin-Wall Morphology—II: Applications
,”
ASME J. Heat Transfer
,
141
(
1
), p.
012701
.10.1115/1.4040958
18.
Vargas
,
W. L.
, and
McCarthy
,
J. J.
,
2001
, “
Heat Conduction in Granular Materials
,”
AIChE J.
,
47
(
5
), pp.
1052
1059
.10.1002/aic.690470511
19.
Zhong
,
W.
,
Yu
,
A.
,
Zhou
,
G.
,
Xie
,
J.
, and
Zhang
,
H.
,
2016
, “
CFD Simulation of Dense Particulate Reaction System: Approaches, Recent Advances and Applications
,”
Chem. Eng. Sci.
,
140
, pp.
16
43
.10.1016/j.ces.2015.09.035
20.
Wu
,
H.
,
Gui
,
N.
,
Yang
,
X.
,
Tu
,
J.
, and
Jiang
,
S.
,
2017
, “
Numerical Simulation of Heat Transfer in Packed Pebble Beds: CFD-DEM Coupled With Particle Thermal Radiation
,”
Int. J. Heat Mass Transfer
,
110
, pp.
393
405
.10.1016/j.ijheatmasstransfer.2017.03.035
21.
Tsotsas
,
E.
, and
Martin
,
H.
,
1987
, “
Thermal Conductivity of Packed Beds: A Review
,”
Chem. Eng. Process.
,
22
(
1
), pp.
19
37
.10.1016/0255-2701(87)80025-9
22.
Zbogar
,
A.
,
Frandsen
,
F. J.
,
Jensen
,
P. A.
, and
Glarborg
,
P.
,
2005
, “
Heat Transfer in Ash Deposits: A Modelling Tool-Box
,”
Prog. Energy Combust. Sci.
,
31
(
5–6
), pp.
371
421
.10.1016/j.pecs.2005.08.002
23.
Wu
,
H.
,
Gui
,
N.
,
Yang
,
X.
,
Tu
,
J.
, and
Jiang
,
S.
,
2018
, “
Modeling Effective Thermal Conductivity of Thermal Radiation for Nuclear Packed Pebble Beds
,”
ASME J. Heat Transfer
,
140
(
4
), p.
042701
.10.1115/1.4038231
24.
Wu
,
H.
,
Gui
,
N.
,
Yang
,
X.
,
Tu
,
J.
, and
Jiang
,
S.
,
2018
, “
Particle-Scale Investigation of Thermal Radiation in Nuclear Packed Pebble Beds
,”
ASME J. Heat Transfer
,
140
(
9
), p.
092002
.10.1115/1.4039913
25.
Wu
,
H.
,
Gui
,
N.
,
Yang
,
X.
,
Tu
,
J.
, and
Jiang
,
S.
,
2016
, “
Effect of Scale on the Modeling of Radiation Heat Transfer in Packed Pebble Beds
,”
Int. J. Heat Mass Transfer
,
101
, pp.
562
569
.10.1016/j.ijheatmasstransfer.2016.05.090
26.
Lu
,
G.
,
Third
,
J.
, and
Müller
,
C.
,
2015
, “
Discrete Element Models for Non-Spherical Particle Systems: From Theoretical Developments to Applications
,”
Chem. Eng. Sci.
,
127
, pp.
425
465
.10.1016/j.ces.2014.11.050
27.
van Antwerpen
,
W.
,
Rousseau
,
P. G.
, and
du Toit
,
C. G.
,
2012
, “
Multi-Sphere Unit Cell Model to Calculate the Effective Thermal Conductivity in Packed Pebble Beds of Mono-Sized Spheres
,”
Nucl. Eng. Des.
,
247
, pp.
183
201
.10.1016/j.nucengdes.2012.03.012
28.
Gusarov
,
A.
,
2010
, “
Model of Radiative Heat Transfer in Heterogeneous Multiphase Media
,”
Phys. Rev. B
,
81
(
6
), p.
064202
.10.1103/PhysRevB.81.064202
29.
Reiss
,
H.
,
1988
,
Radiative Transfer in Nontransparent, Dispersed Media
,
Springer-Verlag
,
Berlin Heidelberg, Germany
.
30.
Modest
,
M. F.
,
2013
,
Radiative Heat Transfer
,
Academic Press
,
New York
.
31.
Schotte
,
W.
,
1960
, “
Thermal Conductivity of Packed Beds
,”
AlChE J.
,
6
(
1
), pp.
63
67
.10.1002/aic.690060113
32.
Jones
,
J. M.
,
Mason
,
P. E.
, and
Williams
,
A.
,
2019
, “
A Compilation of Data on the Radiant Emissivity of Some Materials at High Temperatures
,”
J. Energy Inst.
,
92
(
3
), pp.
523
534
.10.1016/j.joei.2018.04.006
33.
Wang
,
X.
,
Zheng
,
J.
, and
Chen
,
H.
,
2016
, “
A Prediction Model for the Effective Thermal Conductivity of Mono-Sized Pebble Beds
,”
Fusion Eng. Des.
,
103
, pp.
136
151
.10.1016/j.fusengdes.2015.12.051
34.
Vignoles
,
G. L.
,
2016
, “
A Hybrid Random Walk Method for the Simulation of Coupled Conduction and Linearized Radiation Transfer at Local Scale in Porous Media With Opaque Solid Phases
,”
Int. J. Heat Mass Transfer
,
93
, pp.
707
719
.10.1016/j.ijheatmasstransfer.2015.10.056
35.
Shonnard
,
D.
, and
Whitaker
,
S.
,
1989
, “
The Effective Thermal Conductivity for a Pointcontact Porous Medium: An Experimental Study
,”
Int. J. Heat Mass Transfer
,
32
(
3
), pp.
503
512
.10.1016/0017-9310(89)90138-5
36.
Rouhani
,
M.
,
Huttema
,
W.
, and
Bahrami
,
M.
,
2018
, “
Effective Thermal Conductivity of Packed Bed Adsorbers-Part 1: Experimental Study
,”
Int. J. Heat Mass Transfer
,
123
, pp.
1204
1211
.10.1016/j.ijheatmasstransfer.2018.01.142
37.
Coetzee
,
C.
,
2016
, “
Calibration of the Discrete Element Method and the Effect of Particle Shape
,”
Powder Technol.
,
297
, pp.
50
70
.10.1016/j.powtec.2016.04.003
38.
Sun
,
R.
,
Xiao
,
H.
, and
Sun
,
H.
,
2017
, “
Realistic Representation of Grain Shapes in CFD–DEM Simulations of Sediment Transport With a Bonded-Sphere Approach
,”
Adv. Water Resour.
,
107
, pp.
421
438
.10.1016/j.advwatres.2017.04.015
39.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
,
2006
, “
Effective Thermal Conductivity of Rough Spherical Packed Beds
,”
Int. J. Heat Mass Transfer
,
49
(
19–20
), pp.
3691
3701
.10.1016/j.ijheatmasstransfer.2006.02.021
40.
Kloss
,
C.
,
Goniva
,
C.
,
Hager
,
A.
,
Amberger
,
S.
, and
Pirker
,
S.
,
2012
, “
Models, Algorithms and Validation for Opensource DEM and CFD–DEM
,”
Prog. Comput. Fluid Dyn.
,
12
(
2/3
), pp.
140
152
.10.1504/PCFD.2012.047457
You do not currently have access to this content.