For a hydrocarbon burning with oxygen, the resulting exhaust stream is composed mainly of carbon dioxide and water vapor. This exhaust allows for easier carbon capture and sequestration since the water can be condensed out. Another advantage is the significant reduction of NOx since much of the nitrogen found in air-fired systems is eliminated. Although beneficial, many of the exhaust gas products' radiative heat transfer characteristics are unknown. Motivated by this, this paper focuses on the spectral radiation measurement of premixed oxy-methane combustion flames. This is important for combustion system designers since radiative heat from the flame is significant for oxy-flames. This study is conducted by varying equivalence ratio, firing input, and CO2 recirculation ratio. The spectral radiation of premixed oxy-methane flames is collected from 1.2 μm to 5 μm wavelengths. During the experimental study, it is found that the water vapor emits at 1.4 μm, 1.85 μm, and 2.5 μm wavelengths. A short band of carbon dioxide emission is detected at 1.96 μm. Three other carbon dioxide radiation maxima are observed at the proximity of 2.71 μm, 2.85 μm, and 4.38 μm. The study revealed that the spectral intensity of CO2 and H2O for oxy-methane combustion increases almost five times compared to the air-methane combustion at stochiometric condition. It is also found that the spectral intensity decreases as the equivalence ratio increases. The spectral radiative emission intensity increases as the firing input increases. Another observation includes the fact that spectral intensity increases up to five times when 60% CO2 is recirculated as a diluent in the flame.

References

1.
Glarborg
,
P.
, and
Bentzen
,
L. L.
,
2008
, “
Chemical Effects of a High CO2 Concentration in Oxy-Fuel Combustion of Methane
,”
Energy Fuels
,
22
(
1
), pp.
291
296
.
2.
Zhang
,
N.
, and
Lior
,
N.
,
2008
, “
Two Novel Oxy-Fuel Power Cycles Integrated With Natural Gas Reforming and CO2 Capture
,”
Energy
,
33
(
2
), pp.
340
351
.
3.
Murphy
,
J. J.
, and
Shaddix
,
C. R.
,
2006
, “
Combustion Kinetics of Coal Chars in Oxygen-Enriched Environments
,”
Combust. Flame
,
144
(
4
), pp.
710
729
.
4.
Buhre
,
B. J. P.
,
Elliott
,
L.
,
Sheng
,
C. D.
,
Gupta
,
R. P.
, and
Wall
,
T. F.
,
2005
, “
Oxy-Fuel Combustion Technology for Coal-Fired Power Generation
,”
Prog. Energy Combust. Sci.
,
31
(
4
), pp.
283
307
.
5.
Stadler
,
H.
,
Beggel
,
F.
,
Habermehl
,
M.
,
Persigehl
,
B.
,
Kneer
,
R.
,
Modigell
,
M.
, and
Jeschke
,
P.
,
2011
, “
Oxyfuel Coal Combustion by Efficient Integration of Oxygen Transport Membranes
,”
Int. J. Greenhouse Gas Control
,
5
(
1
), pp.
7
15
.
6.
Hong
,
J.
,
Chaudhry
,
G.
,
Brisson
,
J. G.
,
Field
,
R.
,
Gazzino
,
M.
, and
Ghoniem
,
A. F.
,
2009
, “
Analysis of Oxy-Fuel Combustion Power Cycle Utilizing a Pressurized Coal Combustor
,”
Energy
,
34
(
9
), pp.
1332
1340
.
7.
Chowdhury
,
A. A.
,
Bugarin
,
L.
,
Badhan
,
A.
,
Choudhuri
,
A.
, and
Love
,
N.
,
2016
, “
Thermodynamic Analysis of a Directly Heated Oxyfuel Supercritical Power System
,”
Appl. Energy
,
179
, pp.
261
271
.
8.
McClung
,
A.
,
Brun
,
K.
, and
Chordia
,
L.
,
2014
, “
Technical and Economic Evaluation of Supercritical Oxy-Combustion for Power Generation
,” Four
th International Supercritical CO2 Power Cycles Symposium
, Pittsburgh, PA, Sept. 9–10, Paper No.
40
.http://www.sco2symposium.com/www2/sco2/papers2014/systemConcepts/40-McClung.pdf
9.
Li
,
Y.
,
Chen
,
G.
, and
Chao
,
Y.
,
2015
, “
Effects of Flue Gas Addition on the Premixed Oxy-Methane Flames in Atmospheric Condition
,”
Energy Procedia
,
75
, pp.
3054
3059
.
10.
Ditaranto
,
M.
, and
Hals
,
J.
,
2006
, “
Combustion Instabilities in Sudden Expansion Oxy–Fuel Flames
,”
Combust. Flame
,
146
(
3
), pp.
493
512
.
11.
Konnov
,
A. A.
, and
Dyakov
,
I. V.
,
2005
, “
Measurement of Propagation Speeds in Adiabatic Cellular Premixed Flames of CH4+ O2+ CO2
,”
Exp. Therm. Fluid Sci.
,
29
(
8
), pp.
901
907
.
12.
Habib
,
M. A.
,
Nemitallah
,
M. A.
,
Ahmed
,
P.
,
Sharqawy
,
M. H.
,
Badr
,
H. M.
,
Muhammad
,
I.
, and
Yaqub
,
M.
,
2015
, “
Experimental Analysis of Oxygen-Methane Combustion Inside a Gas Turbine Reactor Under Various Operating Conditions
,”
Energy
,
86
, pp.
105
114
.
13.
Oh
,
J.
, and
Hong
,
S.
,
2016
, “
Oxygen Temperature Variation of a Non-Premixed Oxy-Methane Flame in a Lab-Scale Slot Burner
,”
Appl. Therm. Eng.
,
104
, pp.
804
817
.
14.
Heil
,
P.
,
Toporov
,
D.
,
Förster
,
M.
, and
Kneer
,
R.
,
2011
, “
Experimental Investigation on the Effect of O2 and CO2 on Burning Rates During Oxyfuel Combustion of Methane
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3407
3413
.
15.
Hu
,
X.
,
Yu
,
Q.
,
Liu
,
J.
, and
Sun
,
N.
,
2014
, “
Investigation of Laminar Flame Speeds of CH4/O2/CO2 Mixtures at Ordinary Pressure and Kinetic Simulation
,”
Energy
,
70
, pp.
626
634
.
16.
Koroglu
,
B.
,
Pryor
,
O. M.
,
Lopez
,
J.
,
Nash
,
L.
, and
Vasu
,
S. S.
,
2016
, “
Shock Tube Ignition Delay Times and Methane Time-Histories Measurements During Excess CO2 Diluted Oxy-Methane Combustion
,”
Combust. Flame
,
164
, pp.
152
163
.
17.
Liua
,
F.
,
Becker
,
H. A.
, and
Bindar
,
Y. A.
,
1998
, “
Comparative Study of Radiative Heat Transfer Modelling in Gas-Fired Furnaces Using the Simple Grey Gas and the Weighted-Sum-of-Grey-Gases Models
,”
Int. J. Heat Mass Transfer
,
41
(
22
), pp.
3357
3371
.
18.
Zheng
,
Y.
,
Barlow
,
R. S.
, and
Gore
,
J. P.
,
2003
, “
Measurements and Calculations of Spectral Radiation Intensities for Turbulent Non-Premixed and Partially Premixed Flames
,”
ASME J. Heat Transfer
,
125
(
4
), pp.
678
686
.
19.
Coelho
,
P. J.
,
Teerling
,
O. J.
, and
Roekaerts
,
D.
,
2003
, “
Spectral Radiative Effects and Turbulence/Radiation Interaction in a Non-Luminous Turbulent Jet Diffusion Flame
,”
Combust. Flame
,
133
(
1–2
), pp.
75
91
.
20.
Ruan
,
J.
,
Kobayashi
,
H.
,
Niioka
,
T.
, and
Ju
,
Y.
,
2001
, “
Combined Effects of Nongray Radiation and Pressure on Premixed CH4/O2/CO2 Flames
,”
Combust. Flame
,
124
(
1–2
), pp.
225
230
.
21.
Ju
,
Y.
,
Masuya
,
G.
, and
Ronney
,
P. D.
,
1998
, “
Effects of Radiative Emission and Absorption on the Propagation and Extinction of Premixed Gas Flames
,”
Int. Symp. Combust.
,
27
(
2
), pp.
2619
2626
.
22.
Krishnan
,
S. S.
,
Saini
,
M. K.
,
Zheng
,
Y.
, and
Gore
,
J. P.
,
2012
, “
Radiation Properties of Oxygen-Enhanced Normal and Inverse Diffusion Flames
,”
ASME J. Heat Transfer
,
134
(
2
), p.
022701
.
23.
Gore
,
J. P.
,
Jeng
,
S. M.
, and
Faeth
,
G. M.
,
1987
, “
Spectral and Total Radiation Properties of Turbulent Hydrogen/Air Diffusion Flames
,”
ASME J. Heat Transfer
,
109
(
1
), pp.
165
171
.
24.
Chen
,
Z.
,
Qin
,
X.
,
Xu
,
B.
,
Ju
,
Y.
, and
Liu
,
F.
,
2007
, “
Studies of Radiation Absorption on Flame Speed and Flammability Limit of CO2 Diluted Methane Flames at Elevated Pressures
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
2693
2700
.
25.
Dam
,
B.
,
Corona
,
G.
, and
Choudhuri
,
A.
,
2010
, “
Flashback Propensity in Swirl Stabilized Burner With Syngas Fuels
,”
ASME
Paper No. POWER2010-27237.
26.
Groppi
,
G.
,
Cristiani
,
C.
,
Lietti
,
L.
,
Ramella
,
C.
,
Valentini
,
M.
, and
Forzatti
,
P.
,
1999
, “
Effect of Ceria on Palladium Supported Catalysts for High Temperature Combustion of CH4 Under Lean Conditions
,”
Catal. Today
,
50
(
2
), pp.
399
412
.
27.
Lee
,
S. Y.
,
Seo
,
S.
,
Broda
,
J. C.
,
Pal
,
S.
, and
Santoro
,
R. J.
,
2000
, “
An Experimental Estimation of Mean Reaction Rate and Flame Structure During Combustion Instability in a Lean Premixed Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
775
782
.
28.
Ludwig
,
C. B.
,
Malkmus
,
W.
,
Reardon
,
J. E.
,
Thomson
,
J. A. L.
, and
Goulard
,
R.
,
1973
, “
Handbook of Infrared Radiation From Combustion Gases
,”
NASA Marshall Space Flight Center
, Huntsville, AL, Report No.
NASA-SP-3080
.https://ntrs.nasa.gov/search.jsp?R=19730019075
29.
Depraz
,
S.
,
Perrin
,
M. Y.
, and
Soufiani
,
A.
,
2012
, “
Infrared Emission Spectroscopy of CO2 at High Temperature—Part I: Experimental Setup and Source Characterization
,”
J. Quant. Spectrosc. Radiat. Transfer
,
113
(
1
), pp.
1
13
.
30.
Depraz
,
S.
,
Perrin
,
M. Y.
,
Rivière
,
P.
, and
Soufiani
,
A.
,
2012
, “
Infrared Emission Spectroscopy of CO2 at High Temperature—Part II: Experimental Results and Comparisons With Spectroscopic Databases
,”
J. Quant. Spectrosc. Radiat. Transfer
,
113
(
1
), pp.
14
25
.
31.
Zheng
,
W.
,
Kriss
,
G. A.
,
Telfer
,
R. C.
,
Grimes
,
J. P.
, and
Davidsen
,
A. F.
,
1997
, “
A Composite HST Spectrum of Quasars
,”
Astrophys. J.
,
475
(
2
), pp.
469
478
.
32.
Viskanta
,
R.
, and
Mengüç
,
M. P.
,
1987
, “
Radiation Heat Transfer in Combustion Systems
,”
Prog. Energy Combust. Sci.
,
13
(
2
), pp.
97
160
.
33.
Ellis
,
J. W.
,
1925
, “
Emission and Absorption Bands of Carbon Dioxide in the Infrared
,”
Phys. Rev.
,
26
(
4
), pp.
469
474
.
34.
Paschen
,
F.
,
1893
, “
Ueber Die Emission Erhitzter Gase
,”
Ann. Phys.
,
286
(
11
), pp.
409
443
.
35.
Abdul-Sater
,
H.
, and
Krishnamoorthy
,
G.
,
2013
, “
An Assessment of Radiation Modeling Strategies in Simulations of Laminar to Transitional, Oxy-Methane, Diffusion Flames
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
507
518
.
36.
Lefebvre
,
A. H.
,
1969
, “
Radiation From Flames in Gas Turbines and Rocket Engines
,”
Int. Symp. Combust.
,
12
(
1
), pp.
1247
1253
.
37.
Guo
,
H.
,
Ju
,
Y.
,
Maruta
,
K.
,
Niioka
,
T.
, and
Liu
,
F.
,
1997
, “
Radiation Extinction Limit of Counterflow Premixed Lean Methane-Air Flames
,”
Combust. Flame
,
109
(
4
), pp.
639
646
.
38.
Xu
,
F.
,
Sunderland
,
P. B.
, and
Faeth
,
G. M.
,
1997
, “
Soot Formation in Laminar Premixed Ethylene/Air Flames at Atmospheric Pressure
,”
Combust. Flame
,
108
(
4
), pp.
471
493
.
39.
Pessoa-Filho
,
J. B.
,
1999
, “
Thermal Radiation in Combustion Systems
,”
J. Braz. Soc. Mech. Sci.
,
21
(
3
), pp.
537
547
.
You do not currently have access to this content.