In this paper, heat transfer modeling of a high-temperature porous-medium filled solar thermochemical reactor for hydrogen and synthesis gas production is investigated. The numerical simulation is performed using a three-dimensional (3D) numerical model and surface-to-surface radiation model coupled to Rosseland approximation for radiation heat transfer. The effects of operating conditions and the porous structural parameters on the reactor thermal performance were investigated significantly. It was found that large axial temperature gradient and high-temperature distribution throughout the reactor were strongly dependent on the operating conditions. The inlet gas temperature has remarkable effects on the temperature distribution. The thermal performance of porous-medium filled solar thermochemical reactor could be improved by preheating the inlet gas up to 393.15 K. Moreover, a correlation was established between the protective gas inlet velocity and the porosity of porous media. The temperature difference decreased with the increase in the porosity of the inner cavity of the reactor. In contrast to the front and back parts of the inner cavity of the reactor, higher temperature distribution could be obtained in the porous region by increasing the average cell diameters of porous media.

References

1.
Keeley
,
A. R.
, and
Matsumoto
,
K.
,
2018
, “
Investors' Perspective on Determinants of Foreign Direct Investment in Wind and Solar Energy in Developing Economies—Review and Expert Opinions
,”
J. Cleaner Prod.
,
179
, pp.
132
142
.
2.
Eyraud
,
L.
,
Clements
,
B.
, and
Wane
,
A.
,
2013
, “
Green Investment: Trends and Determinants
,”
Energy Policy
,
60
, pp.
852
865
.
3.
Carrillo
,
R. J.
, and
Scheffe
,
J. R.
,
2017
, “
Advances and Trends in Redox Materials for Solar Thermochemical Fuel Production
,”
Sol. Energy
,
156
, pp.
3
20
.
4.
Agrafiotis
,
C.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2015
, “
A Review on Solar Thermal Syngas Production Via Redox Pair-Based Water/Carbon Dioxide Splitting Thermochemical Cycles
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
254
285
.
5.
Koepf
,
E.
,
Alxneit
,
I.
,
Wieckert
,
C.
, and
Meier
,
A.
,
2017
, “
A Review of High Temperature Solar Driven Reactor Technology: 25 Years of Experience in Research and Development at the Paul Scherrer Institute
,”
Appl. Energy
,
188
, pp.
620
651
.
6.
Petrasch
,
J.
, and
Klausner
,
J.
,
2012
, “
Integrated Solar Thermochemical Cycles for Energy Storage and Fuel Production
,”
Wiley Interdiscip. Rev. Energy Environ.
,
1
(
3
), pp.
347
361
.
7.
Villafan-Vidales
,
H. I.
,
Arancibia-Bulnes
,
C. A.
,
Riveros-Rosas
,
D.
,
Romero-Paredes
,
H.
, and
Estrada
,
C. A.
,
2017
, “
An Overview of the Solar Thermochemical Processes for Hydrogen and Syngas Production: Reactors, and Facilities
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
894
908
.
8.
Marxer
,
D.
,
Furler
,
P.
,
Takacs
,
M.
, and
Steinfeld
,
A.
,
2017
, “
Solar Thermochemical Splitting of CO2 into Separate Streams of CO and O2 With High Selectivity, Stability, Conversion, and Efficiency
,”
Energy Environ. Sci.
,
10
(
5
), pp.
1142
1149
.
9.
Yadav
,
D.
, and
Banerjee
,
R.
,
2016
, “
A Review of Solar Thermochemical Processes
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
497
532
.
10.
Kodama
,
T.
, and
Gokon
,
N.
,
2007
, “
Thermochemical Cycles for High-Temperature Solar Hydrogen Production
,”
Chem. Rev.
,
107
(
10
), pp.
4048
4077
.
11.
Ackermann
,
S.
,
Takacs
,
M.
,
Scheffe
,
J.
, and
Steinfeld
,
A.
,
2017
, “
Reticulated Porous Ceria Undergoing Thermochemical Reduction With High-Flux Irradiation
,”
Int. J. Heat Mass Transfer
,
107
, pp.
439
449
.
12.
Pal
,
B.
,
Vijayan
,
B. L.
,
Krishnan
,
S. G.
,
Harilal
,
M.
,
Basirun
,
W. J.
,
Lowe
,
A.
,
Yusoff
,
M. M.
, and
Jose
,
R.
,
2018
, “
Hydrothermal Syntheses of Tungsten Doped TiO2 and TiO2/WO3 Composite Using Metal Oxide Precursors for Charge Storage Applications
,”
J. Alloys Compd.
,
740
, pp.
703
710
.
13.
Tescari
,
S.
,
Singh
,
A.
,
Agrafiotis
,
C.
,
de Oliveira
,
L.
,
Breuer
,
S.
,
Schloegl-Knothe
,
B.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2017
, “
Experimental Evaluation of a Pilot-Scale Thermochemical Storage System for a Concentrated Solar Power Plant
,”
Appl. Energy
,
189
, pp.
66
75
.
14.
Yu
,
T.
,
Yuan
,
Q.
,
Lu
,
J.
,
Ding
,
J.
, and
Lu
,
Y.
,
2017
, “
Thermochemical Storage Performances of Methane Reforming With Carbon Dioxide in Tubular and Semi-Cavity Reactors Heated by a Solar Dish System
,”
Appl. Energy
,
185
(
2)
, pp.
1994
2004
.
15.
Agrafiotis
,
C.
,
Roeb
,
M.
,
Schmuecker
,
M.
, and
Sattler
,
C.
,
2014
, “
Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Systems for Thermochemical Storage of Solar Heat—Part 1: Testing of Cobalt Oxide-Based Powders
,”
Sol. Energy
,
102
, pp.
189
211
.
16.
Agrafiotis
,
C.
,
Roeb
,
M.
,
Schmuecker
,
M.
, and
Sattler
,
C.
,
2015
, “
Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Systems for Thermochemical Storage of Solar Heat—Part 2: Redox Oxide-Coated Porous Ceramic Structures as Integrated Thermochemical Reactors/Heat Exchangers
,”
Sol. Energy
,
114
, pp.
440
458
.
17.
Agrafiotis
,
C.
,
Tescari
,
S.
,
Roeb
,
M.
,
Schmucker
,
M.
, and
Sattler
,
C.
,
2015
, “
Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Systems for Thermochemical Storage of Solar Heat—Part 3: Cobalt Oxide Monolithic Porous Structures as Integrated Thermochemical Reactors/Heat Exchangers
,”
Sol. Energy
,
114
, pp.
459
475
.
18.
Agrafiotis
,
C.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2016
, “
Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Systems for Thermochemical Storage of Solar Heat—Part 4: Screening of Oxides for Use in Cascaded Thermochemical Storage Concepts
,”
Sol. Energy
,
139
, pp.
695
710
.
19.
Agrafiotis
,
C.
,
Becker
,
A.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2016
, “
Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Systems for Thermochemical Storage of Solar Heat—Part 5: Testing of Porous Ceramic Honeycomb and Foam Cascades Based on Cobalt and Manganese Oxides for Hybrid Sensible/Thermochemical Heat Storage
,”
Sol. Energy
,
139
, pp.
676
694
.
20.
Agrafiotis
,
C.
,
Block
,
T.
,
Senholdt
,
M.
,
Tescari
,
S.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2017
, “
Exploitation of Thermochemical Cycles Based on Solid Oxide Redox Systems for Thermochemical Storage of Solar Heat—Part 6: Testing of Mn-Based Combined Oxides and Porous Structures
,”
Sol. Energy
,
149
, pp.
227
244
.
21.
Furler
,
P.
,
Scheffe
,
J.
,
Gorbar
,
M.
,
Moes
,
L.
,
Vogt
,
U.
, and
Steinfeld
,
A.
,
2012
, “
Solar Thermochemical CO2 Splitting Utilizing a Reticulated Porous Ceria Redox System
,”
Energy Fuels
,
26
(
11
), pp.
7051
7059
.
22.
Furler
,
P.
,
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2012
, “
Syngas Production by Simultaneous Splitting of H2O and CO2 Via Ceria Redox Reactions in a High-Temperature Solar Reactor
,”
Energy Environ. Sci.
,
5
(
3
), pp.
6098
6103
.
23.
Lougou
,
B. G.
,
Hong
,
J.
,
Shuai
,
Y.
,
Huang
,
X.
,
Yuan
,
Y.
, and
Tan
,
H.
,
2017
, “
Production Mechanism Analysis of H2 and CO Via Solar Thermochemical Cycles Based on Iron Oxide (Fe3O4) at High Temperature
,”
Sol. Energy
,
148
, pp.
117
127
.
24.
Lougou
,
B. G.
,
Shuai
,
Y.
,
Zhang
,
J.
,
Huang
,
X.
,
Yuan
,
Y.
, and
Tan
,
H.
,
2016
, “
Syngas Production by Simultaneous Splitting of H2O and CO2 Via Iron Oxide (Fe3O4) Redox Reactions Under High-Pressure
,”
Int. J. Hydrogen Energy
,
41
(
44
), pp.
19936
19946
.
25.
Chueh
,
W. C.
,
Falter
,
C.
,
Abbott
,
M.
,
Scipio
,
D.
,
Furler
,
P.
,
Haile
,
Sossina M.
, and
Steinfeld
,
A.
,
2012
, “
High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
,”
Science
,
330
(
6012
), pp.
1791
1801
.http://science.sciencemag.org/content/330/6012/1797
26.
Lougou
,
B. G.
,
Shuai
,
Chaffa
,
G.
,
Huang
,
X.
,
Tan
,
H.
, and
Du
,
H.
,
2018
, “
Analysis of CO2 Utilization Into Synthesis Gas Based on Solar Thermochemical CH4-Reforming
,”
J. Energy Chem.
(in press).
27.
Lougou
,
B. G.
,
Shuai
,
Guohua
,
Z.
,
Chaffa
,
G.
,
Ahouannou
,
C.
, and
Tan
,
H.
,
2018
, “
Analysis of H2 and CO Production Via Solar Thermochemical Reacting System of NiFe2O4 Redox Cycles Combined With CH4 Partial Oxidation
,”
Int. J. Hydrogen Energy
,
43
(
12
), pp.
5996
6010
.
28.
Koepf
,
E.
,
Villasmil
,
W.
, and
Meier
,
A.
,
2016
, “
Pilot-Scale Solar Reactor Operation and Characterization for Fuel Production Via the Zn/ZnO Thermochemical Cycle
,”
Appl. Energy
,
165
, pp.
1004
1023
.
29.
Haueter
,
P.
,
Moeller
,
S.
,
Palumbo
,
R.
, and
Steinfeld
,
A.
,
1999
, “
The Production of Zinc by Thermal Dissociation of Zinc Oxide—Solar Chemical Reactor Design
,”
Sol. Energy
,
67
(
1–3
), pp.
161
167
.
30.
Villasmil
,
W.
,
Meier
,
A.
, and
Steinfeld
,
A.
,
2014
, “
Dynamic Modeling of a Solar Reactor for Zinc Oxide Thermal Dissociation and Experimental Validation Using IR Thermography
,”
ASME J. Sol. Energy Eng.
,
136
(
1
), p. 010901.
31.
Gonzalez
,
H.
,
Caro
,
S.
,
Toledo
,
M.
, and
Olguin
,
H.
,
2018
, “
Syngas Production From Polyethylene and Biogas in Porous Media Combustion
,”
Int. J. Hydrogen Energy
,
43
(
9
), pp.
4294
4304
.
32.
Bellan
,
S.
,
Alonso
,
E.
,
Gomez-Garcia
,
F.
, Perez-Rabago, C., Gonzalez-Aguilar, J., and Romero, M.,
2013
, “
Thermal Performance of Lab-Scale Solar Reactor Designed for Kinetics Analysis at High Radiation Fluxes
,”
Chem. Eng. Sci.
,
101
, pp.
81
89
.
33.
Steinfeld
,
A.
,
2005
, “
Solar Thermochemical Production of Hydrogen—A Review
,”
Sol. Energy
,
78
(
5
), pp.
603
615
.
34.
Schunk
,
L. O.
,
Haeberling
,
P.
,
Wepf
,
S.
,
Wuillemin
,
D.
,
Meier
,
A.
, and
Steinfeld
,
A.
,
2008
, “
A Receiver-Reactor for the Solar Thermal Dissociation of Zinc Oxide
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), p.
021009
.
35.
Keene
,
D. J.
,
Davidson
,
J. H.
, and
Lipiński
,
W.
,
2013
, “
A Model of Transient Heat and Mass Transfer in a Heterogeneous Medium of Ceria Undergoing Nonstoichiometric Reduction
,”
ASME J. Heat Transfer
,
135
(
5
), p.
052701
.
36.
Wang
,
F.
,
Shuai
,
Y.
,
Tan
,
H.
, and
Yu
,
C.
,
2013
, “
Thermal Performance Analysis of Porous Media Receiver With Concentrated Solar Irradiation
,”
Int. J. Heat Mass Transfer
,
62
, pp.
247
254
.
37.
Wang
,
F.
,
Tan
,
J.
,
Shuai
,
Y.
,
Tan
,
H.
, and
Chu
,
S.
,
2014
, “
Thermal Performance Analyses of Porous Media Solar Receiver With Different Irradiative Transfer Models
,”
Int. J. Heat Mass Transfer
,
78
, pp.
7
16
.
38.
Iasiello
,
M.
,
Cunsolo
,
S.
,
Oliviero
,
M.
,
Harris
,
W. M.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
, and
Naso
,
V.
,
2014
, “
Numerical Analysis of Heat Transfer and Pressure Drop in Metal Foams for Different Morphological Models
,”
ASME J. Heat Transfer
,
136
(
11
), p.
112601
.
39.
Ganesan
,
K.
,
Randrianalisoa
,
J.
, and
Lipinski
,
W.
,
2013
, “
Effect of Morphology on Spectral Radiative Properties of Three-Dimensionally Ordered Macroporous Ceria Packed Bed
,”
ASME J. Heat Transfer
,
135
(
12
), p.
122701
.
40.
Lapp
,
J.
, and
Lipinski
,
W.
,
2014
, “
Transient Three-Dimensional Heat Transfer Model of a Solar Thermochemical Reactor for H2O and CO2 Splitting Via Nonstoichiometric Ceria Redox Cycling
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031006
.
41.
Chandran
,
R. B.
,
Bader
,
R.
, and
Lipiński
,
W.
,
2015
, “
Transient Heat and Mass Transfer Analysis in a Porous Ceria Structure of a Novel Solar Redox Reactor
,”
Int. J. Therm. Sci.
,
92
, pp.
138
149
.
42.
Haussener
,
S.
,
Jerjen
,
I.
,
Wyss
,
P.
, and
Steinfeld
,
A.
,
2011
, “
Tomography-Based Determination of Effective Transport Properties for Reacting Porous Media
,”
ASME J. Heat Transfer
,
134
(
1
), p.
012601
.
43.
Lougou
,
B. G.
,
Shuai
,
Y.
,
Xing
,
H.
,
Yuan
,
Y.
, and
Tan
,
H.
,
2017
, “
Thermal Performance Analysis of Solar Thermochemical Reactor for Syngas Production
,”
Int. J. Heat Mass Transfer
,
111
, pp.
410
418
.
44.
Lougou
,
B. G.
,
Shuai
,
Y.
,
Chen
,
X.
,
Yuan
,
Y.
,
Tan
,
H.
, and
Xing
,
H.
,
2017
, “
Analysis of Radiation Heat Transfer and Temperature Distributions of Solar Thermochemical Reactor for Syngas Production
,”
Front. Energy
,
11
(
4
), pp.
480
492
.
45.
Chandran
,
R. B.
, and
Davidson
,
J. H.
,
2016
, “
Model of Transport and Chemical Kinetics in a Solar Thermochemical Reactor to Split Carbon Dioxide
,”
Chem. Eng. Sci.
,
146
, pp.
302
315
.
46.
Kopanidis
,
A.
,
Theodorakakos
,
A.
,
Gavaises
,
E.
, and
Bouris
,
D.
,
2010
, “
3D Numerical Simulation of Flow and Conjugate Heat Transfer Through a Pore Scale Model of High Porosity Open Cell Metal Foam
,”
Int. J. Heat Mass Transfer
,
53
(
11–12
), pp.
2539
2550
.
47.
Liu
,
H.
,
Yu
,
Q. N.
,
Qu
,
Z. G.
, and
Yang
,
R. Z.
,
2017
, “
Simulation and Analytical Validation of Forced Convection Inside Open-Cell Metal Foams
,”
Int. J. Therm. Sci.
,
111
, pp.
234
245
.
You do not currently have access to this content.