Abstract

This paper presents a visualization of condensation droplet distribution affected by the electrowetting-on-dielectric (EWOD) approach. A single-side double-layer-electrode design (grid wire, thin wire, and thick wire) and coplanar-electrode design (zigzag) are discussed. Side-by-side experiments with applied 40 V DC electric potential are carried out to compare droplet distribution between identically designed charged and uncharged devices. The uncharged devices show a random droplet distribution, whereas charged devices have a regulated distribution based on the designed patterns. As droplets on the electrode boundaries become larger, they are likely to slide away and stay in electrode-free regions. The droplets “sit” inside the grid wires and distribute vertically along thin and thick wires. On the coplanar-electrode zigzag device, droplets are distributed vertically. The charged surfaces lead to a faster droplet growth rate and more dispersed droplet distribution. This phenomenon accelerates the shedding frequency of the droplets and frees up more areas for small droplets to nucleate and grow. The first shedding moment of the charged surfaces occurs earlier than the uncharged ones for all types of EWOD devices. The detected droplet shedding diameter ranges from 1.2 mm to 2.5 mm in this study. The number of large droplets is found greater on the charged devices compared with the uncharged devices and theoretical model. The work presented in this paper introduces a novel approach to actively influence droplet distribution on microfabricated condensing surfaces and indicates great potential for improving the condensation heat transfer rate via EWOD.

References

1.
Faghri
,
A.
,
Zhang
,
Y.
, and
Howell
,
J. R.
,
2010
,
Advanced Heat and Mass Transfer
,
Global Digital Press
,
Columbia, MO
.
2.
Rose
,
J.
,
2002
, “
Dropwise Condensation Theory and Experiment: A Review
,”
Proc. Inst. Mech. Eng., Part A
,
216
(
2
), pp.
115
128
.10.1243/09576500260049034
3.
Koch
,
G.
,
Zhang
,
D.
, and
Leipertz
,
A.
,
1997
, “
Condensation of Steam on the Surface of Hard Coated Copper Discs
,”
Heat Mass Transfer
,
32
(
3
), pp.
149
156
.10.1007/s002310050105
4.
Rykaczewski
,
K.
, and
Scott
,
J. H. J.
,
2011
, “
Methodology for Imaging Nano-to-Microscale Water Condensation Dynamics on Complex Nanostructures
,”
ACS Nano
,
5
(
7
), pp.
5962
5968
.10.1021/nn201738n
5.
Alwazzan
,
M.
,
Egab
,
K.
,
Peng
,
B.
,
Khan
,
J.
, and
Li
,
C.
,
2017
, “
Condensation on Hybrid-Patterned Copper Tubes (I): Characterization of Condensation Heat Transfer
,”
Int. J. Heat Mass Transfer
,
112
, pp.
991
1004
.10.1016/j.ijheatmasstransfer.2017.05.039
6.
Torresin
,
D.
,
Tiwari
,
M. K.
,
Del Col
,
D.
, and
Poulikakos
,
D.
,
2013
, “
Flow Condensation on Copper-Based Nanotextured Superhydrophobic Surfaces
,”
Langmuir
,
29
(
2
), pp.
840
848
.10.1021/la304389s
7.
Miljkovic
,
N.
,
Enright
,
R.
,
Nam
,
Y.
,
Lopez
,
K.
,
Dou
,
N.
,
Sack
,
J.
, and
Wang
,
E. N.
,
2013
, “
Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces
,”
Nano Lett.
,
13
(
1
), pp.
179
187
.10.1021/nl303835d
8.
Preston
,
D. J.
,
Mafra
,
D. L.
,
Miljkovic
,
N.
,
Kong
,
J.
, and
Wang
,
E. N.
,
2015
, “
Scalable Graphene Coatings for Enhanced Condensation Heat Transfer
,”
Nano Lett.
,
15
(
5
), pp.
2902
2909
.10.1021/nl504628s
9.
Anand
,
S.
,
Paxson
,
A. T.
,
Dhiman
,
R.
,
Smith
,
J. D.
, and
Varanasi
,
K. K.
,
2012
, “
Enhanced Condensation on Lubricant-Impregnated Nanotextured Surfaces
,”
ACS Nano
,
6
(
11
), pp.
10122
10129
.10.1021/nn303867y
10.
Chatterjee
,
A.
,
Derby
,
M. M.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2014
, “
Enhancement of Condensation Heat Transfer With Patterned Surfaces
,”
Int. J. Heat Mass Transfer
,
71
, pp.
675
681
.10.1016/j.ijheatmasstransfer.2013.12.069
11.
Peng
,
B.
,
Ma
,
X.
,
Lan
,
Z.
,
Xu
,
W.
, and
Wen
,
R.
,
2015
, “
Experimental Investigation on Steam Condensation Heat Transfer Enhancement With Vertically Patterned Hydrophobic–Hydrophilic Hybrid Surfaces
,”
Int. J. Heat Mass Transfer
,
83
, pp.
27
38
.10.1016/j.ijheatmasstransfer.2014.11.069
12.
Yang
,
K.-S.
,
Lin
,
K.-H.
,
Tu
,
C.-W.
,
He
,
Y.-Z.
, and
Wang
,
C.-C.
,
2017
, “
Experimental Investigation of Moist Air Condensation on Hydrophilic, Hydrophobic, Superhydrophilic, and Hybrid Hydrophobic-Hydrophilic Surfaces
,”
Int. J. Heat Mass Transfer
,
115
, pp.
1032
1041
.10.1016/j.ijheatmasstransfer.2017.08.112
13.
Kumar
,
A.
, and
Whitesides
,
G. M.
,
1994
, “
Patterned Condensation Figures as Optical Diffraction Gratings
,”
Science
,
263
(
5143
), pp.
60
62
.10.1126/science.263.5143.60
14.
Damle
,
V. G.
, and
Rykaczewski
,
K.
,
2017
, “
Nano-Striped Chemically Anisotropic Surfaces Have Near Isotropic Wettability
,”
Appl. Phys. Lett.
,
110
(
17
), p.
171603
.10.1063/1.4980091
15.
Lopez
,
G. P.
,
Biebuyck
,
H. A.
,
Frisbie
,
C. D.
, and
Whitesides
,
G. M.
,
1993
, “
Imaging of Features on Surfaces by Condensation Figures
,”
Science
,
260
(
5108
), pp.
647
649
.10.1126/science.8480175
16.
Varanasi
,
K. K.
,
Hsu
,
M.
,
Bhate
,
N.
,
Yang
,
W.
, and
Deng
,
T.
,
2009
, “
Spatial Control in the Heterogeneous Nucleation of Water
,”
Appl. Phys. Lett.
,
95
(
9
), p.
094101
.10.1063/1.3200951
17.
Anderson
,
D. M.
,
Gupta
,
M. K.
,
Voevodin
,
A. A.
,
Hunter
,
C. N.
,
Putnam
,
S. A.
,
Tsukruk
,
V. V.
, and
Fedorov
,
A. G.
,
2012
, “
Using Amphiphilic Nanostructures to Enable Long-Range Ensemble Coalescence and Surface Rejuvenation in Dropwise Condensation
,”
ACS Nano
,
6
(
4
), pp.
3262
3268
.10.1021/nn300183d
18.
Lo
,
C. W.
,
Wang
,
C. C.
, and
Lu
,
M. C.
,
2014
, “
Spatial Control of Heterogeneous Nucleation on the Superhydrophobic Nanowire Array
,”
Adv. Funct. Mater.
,
24
(
9
), pp.
1211
1217
.10.1002/adfm.201301984
19.
Ghosh
,
A.
,
Beaini
,
S.
,
Zhang
,
B. J.
,
Ganguly
,
R.
, and
Megaridis
,
C. M.
,
2014
, “
Enhancing Dropwise Condensation Through Bioinspired Wettability Patterning
,”
Langmuir
,
30
(
43
), pp.
13103
13115
.10.1021/la5028866
20.
Mahapatra
,
P. S.
,
Ghosh
,
A.
,
Ganguly
,
R.
, and
Megaridis
,
C. M.
,
2016
, “
Key Design and Operating Parameters for Enhancing Dropwise Condensation Through Wettability Patterning
,”
Int. J. Heat Mass Transfer
,
92
, pp.
877
883
.10.1016/j.ijheatmasstransfer.2015.08.106
21.
Mondal
,
B.
,
Mac Giolla Eain
,
M.
,
Xu
,
Q.
,
Egan
,
V. M.
,
Punch
,
J.
, and
Lyons
,
A. M.
,
2015
, “
Design and Fabrication of a Hybrid Superhydrophobic–Hydrophilic Surface That Exhibits Stable Dropwise Condensation
,”
ACS Appl. Mater. Interfaces
,
7
(
42
), pp.
23575
23588
.10.1021/acsami.5b06759
22.
Mishchenko
,
L.
,
Khan
,
M.
,
Aizenberg
,
J.
, and
Hatton
,
B. D.
,
2013
, “
Spatial Control of Condensation and Freezing on Superhydrophobic Surfaces With Hydrophilic Patches
,”
Adv. Funct. Mater.
,
23
(
36
), pp.
4577
4584
.10.1002/adfm.201300418
23.
Hou
,
Y.
,
Yu
,
M.
,
Chen
,
X.
,
Wang
,
Z.
, and
Yao
,
S.
,
2015
, “
Recurrent Filmwise and Dropwise Condensation on a Beetle Mimetic Surface
,”
ACS Nano
,
9
(
1
), pp.
71
81
.10.1021/nn505716b
24.
Ke
,
Z.
,
Shi
,
J.
,
Zhang
,
B.
, and
Chen
,
C.-L.
,
2017
, “
Numerical Investigation of Condensation on Microstructured Surface With Wettability Patterns
,”
Int. J. Heat Mass Transfer
,
115
, pp.
1161
1172
.10.1016/j.ijheatmasstransfer.2017.08.121
25.
Yan
,
R.
,
McClure
,
T. S.
,
Jasim
,
I. H.
,
Koppula
,
A. K. R.
,
Wang
,
S.
,
Almasri
,
M.
, and
Chen
,
C.-L.
,
2018
, “
Enhanced Water Capture Induced With Electrowetting-on-Dielectric (EWOD) Approach
,”
Appl. Phys. Lett.
,
113
(
20
), p.
204101
.10.1063/1.5053703
26.
Beni
,
G.
, and
Hackwood
,
S.
,
1981
, “
Electro‐Wetting Displays
,”
Appl. Phys. Lett.
,
38
(
4
), pp.
207
209
.10.1063/1.92322
27.
Beni
,
G.
, and
Tenan
,
M.
,
1981
, “
Dynamics of Electrowetting Displays
,”
J. Appl. Phys.
,
52
(
10
), pp.
6011
6015
.10.1063/1.329822
28.
Welters
,
W. J.
, and
Fokkink
,
L. G.
,
1998
, “
Fast Electrically Switchable Capillary Effects
,”
Langmuir
,
14
(
7
), pp.
1535
1538
.10.1021/la971153b
29.
Colgate
,
E.
, and
Matsumoto
,
H.
,
1990
, “
An Investigation of Electrowetting‐Based Microactuation
,”
J. Vac. Sci. Technol. A: Vac., Surf., Films
,
8
(
4
), pp.
3625
3633
.10.1116/1.576516
30.
Lee
,
J.
,
Moon
,
H.
,
Fowler
,
J.
,
Schoellhammer
,
T.
, and
Kim
,
C.-J.
,
2002
, “
Electrowetting and Electrowetting-on-Dielectric for Microscale Liquid Handling
,”
Sens. Actuators A: Phys.
,
95
(
2–3
), pp.
259
268
.10.1016/S0924-4247(01)00734-8
31.
Pollack
,
M. G.
,
Fair
,
R. B.
, and
Shenderov
,
A. D.
,
2000
, “
Electrowetting-Based Actuation of Liquid Droplets for Microfluidic Applications
,”
Appl. Phys. Lett.
,
77
(
11
), pp.
1725
1726
.10.1063/1.1308534
32.
Cho
,
S. K.
,
Moon
,
H.
, and
Kim
,
C.-J.
,
2003
, “
Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits
,”
J. Microelectromech. Syst.
,
12
(
1
), pp.
70
80
.10.1109/JMEMS.2002.807467
33.
Cheng
,
J.
, and
Chen
,
C.-L.
,
2012
, “
Spot Cooling Using Electrowetting-Controlled Thin Film Heat Transfer
,”
ASME
Paper No. MNHMT2012-75032.10.1115/MNHMT2012-75032
34.
Cheng
,
J.-T.
, and
Chen
,
C.-L.
,
2010
, “
Adaptive Chip Cooling Using Electrowetting on Coplanar Control Electrodes
,”
Nanoscale Microscale Thermophys. Eng.
,
14
(
2
), pp.
63
74
.10.1080/15567261003601771
35.
Cheng
,
J.-T.
, and
Chen
,
C.-L.
,
2010
, “
Active Thermal Management of on-Chip Hot Spots Using EWOD-Driven Droplet Microfluidics
,”
Exp. Fluids
,
49
(
6
), pp.
1349
1357
.10.1007/s00348-010-0882-4
36.
Wang
,
S.
,
Chen
,
H.
, and
Chen
,
C.-L.
,
2016
, “
Electrowetting-on-Dielectric Assisted Bubble Detachment in a Liquid Film
,”
Appl. Phys. Lett.
,
108
(
18
), p.
181601
.10.1063/1.4948521
37.
Wang
,
S.
,
Shi
,
J.
,
Chen
,
H.-H.
,
Xu
,
T.
, and
Chen
,
C.-L.
,
2016
, “
Numerical and Experimental Investigation of Bubble Dynamics Via Electrowetting-on-Dielectric (EWOD)
,”
ASME
Paper No. MNHMT2016-6465.10.1115/MNHMT2016-6465
38.
Wang
,
S.
,
Hernan
,
B. J.
, and
Chen
,
C.-L.
,
2018
, “
Towards Enhanced Bubble Detachment Within a Thin Liquid Film by Electrowetting With Voltage Modulation
,”
Phys. Fluids
,
30
(
6
), p.
062102
.10.1063/1.5031430
39.
Baratian
,
D.
,
Dey
,
R.
,
Hoek
,
H.
,
Van Den Ende
,
D.
, and
Mugele
,
F.
,
2018
, “
Breath Figures Under Electrowetting: Electrically Controlled Evolution of Drop Condensation Patterns
,”
Phys. Rev. Lett.
,
120
(
21
), p.
214502
.10.1103/PhysRevLett.120.214502
40.
Dey
,
R.
,
Gilbers
,
J.
,
Baratian
,
D.
,
Hoek
,
H.
,
Van Den Ende
,
D.
, and
Mugele
,
F.
,
2018
, “
Controlling Shedding Characteristics of Condensate Drops Using Electrowetting
,”
Appl. Phys. Lett.
,
113
(
24
), p.
243703
.10.1063/1.5064363
41.
Yeo
,
L. Y.
,
Chang
,
H. C.
,
Chan
,
P. P.
, and
Friend
,
J. R.
,
2011
, “
Microfluidic Devices for Bioapplications
,”
Small
,
7
(
1
), pp.
12
48
.10.1002/smll.201000946
42.
Kirby
,
B. J.
,
2010
,
Micro-and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
,
Cambridge University Press
,
Cambridge, UK
.
43.
Lippmann
,
G.
,
1875
,
Relations Entre Les Phénomènes Électriques et Capillaires
,
Gauthier-Villars
,
Paris, France
.
44.
B
erge,
B.
,
1993
, “
Electrocapillarité et Mouillage de Films Isolants Par L'eau
,”
C. R. de L'Academie Des Sci. Paris, Serie, II
,
317
(
2
), pp.
157
163
.
45.
Mugele
,
F.
, and
Baret
,
J.-C.
,
2005
, “
Electrowetting: From Basics to Applications
,”
J. Phys.: Condens. Matter
,
17
(
28
), p.
R705
.10.1088/0953-8984/17/28/R01
46.
Tretinnikov
,
O. N.
, and
Ikada
,
Y.
,
1994
, “
Dynamic Wetting and Contact Angle Hysteresis of Polymer Surfaces Studied With the Modified Wilhelmy Balance Method
,”
Langmuir
,
10
(
5
), pp.
1606
1614
.10.1021/la00017a047
47.
Weisensee
,
P. B.
,
Wang
,
Y.
,
Qian
,
H.
,
Schultz
,
D.
,
King
,
W. P.
, and
Miljkovic
,
N.
,
2017
, “
Condensate Droplet Size Distribution on Lubricant-Infused Surfaces
,”
Int. J. Heat Mass Transfer
,
109
, pp.
187
199
.10.1016/j.ijheatmasstransfer.2017.01.119
48.
Rose
,
J.
, and
Glicksman
,
L.
,
1973
, “
Dropwise Condensation—The Distribution of Drop Sizes
,”
Int. J. Heat Mass Transfer
,
16
(
2
), pp.
411
425
.10.1016/0017-9310(73)90068-9
You do not currently have access to this content.