The basic theme of this investigation is to analyze heat and mass transport for three-dimensional (3D) stagnation-point flow of nanofluid caused by an exponentially stretched surface when water is treated as base fluid. In this study, we invoked the boundary layer phenomena and suitable similarity transformation of exponential character; as a result, our 3D nonlinear equations of momentum and energy are transmuted into nonlinear and nonhomogeneous differential equations involving ordinary derivatives. Final equations are then puzzled out by applying homotopy analysis technique. Interesting outcomes of aggressing parameters involved in this study, and effecting profiles of temperature field and velocity are explained in detail. Graphical results of involved parameters appearing in considered nanofluid are presented separately. Different aspects of skin friction coefficient as well as Nusselt number are calculated. It is worth mentioning that skin friction (as we go) along x and y-direction is maximal for Cu-water nanofluid and minimal for AL2O3-water nanofluid. Also, the resulting quantity of local Nusselt number came out maximum for Cu-water nanofluid whereas minimum for TiO2-water nanofluid.

References

1.
Sakiadis
,
B. C.
,
1961
, “
Boundary-Layer Behavior on Continuous Solid Surface—I: Boundary Layer Equations for Two Dimensional and Axisymmetric Flow
,”
J. Am. Inst. Chem. Eng.
,
7
(
1
), pp.
26
28
.
2.
Sakiadis
,
B. C.
,
1961
, “
Boundary Layer Behavior on Continuous Solid Surface—II: Boundary Layer on a Continuous Flat Surface
,”
J. Am. Inst. Chem. Eng.
,
7
(
2
), pp.
221
225
.
3.
Crane
,
L.
,
1970
, “
Flow Past a Stretching Plate
,”
Z. Angew. Math. Phys.
,
21
(
4
), pp.
645
647
.
4.
Grubka
,
L. J.
, and
Bobba
,
K. M.
,
1985
, “
Heat Transfer Characteristics of a Continuous Stretching Surface With Variable Temperature
,”
ASME J. Heat Transfer
,
107
(
1
), pp.
248
250
.
5.
Ali
,
M. E.
,
1995
, “
On Thermal Boundary Layer on a Power-Law Stretched Surface With Suction and Injection
,”
Int. J. Heat Fluid Flow
,
16
(
4
), pp.
280
290
.
6.
Andersson
,
H. I.
,
1992
, “
MHD Flow of a Viscoelastic Fluid Past a Stretching Surface
,”
Acta Mech.
,
95
(1–4), pp.
227
230
.
7.
Prasad
,
K. V.
,
Abel
,
S.
, and
Datti
,
P. S.
,
2003
, “
Diffusion of Chemically Reactive Species of a Non-Newtonian Fluid Immersed in a Porous Medium Over a Stretching Sheet
,”
Int. J. Non-Linear Mech.
,
38
(
5
), pp.
651
657
.
8.
Liu
,
I.-C.
,
2005
, “
Flow and Heat Transfer of an Electrically Conducting Fluid of Second Grade in Porous Medium Over a Stretching Sheet Subject to a Transverse Magnetic Field
,”
Int. J. Non-Linear Mech.
,
40
(
4
), pp.
465
474
.
9.
Magyari
,
E.
, and
Keller
,
B.
,
1999
, “
Heat and Mass Transfer in the Boundary Layer on an Exponentially Stretching Continuous Surface
,”
J. Phys. D
,
32
(
5
), pp.
577
585
.
10.
Elbashbeshy
,
E. M. A.
,
2001
, “
Heat Transfer Over an Exponentially Stretching Continuous Surface With Suction
,”
Arch. Mech.
,
53
(6), pp.
643
651
.http://am.ippt.pan.pl/am/article/view/v53p643
11.
Liu
,
C.
,
Wang
,
H. H.
, and
Peng
,
Y. F.
,
2013
, “
Flow and Heat Transfer for Three-Dimensional Flow Over an Exponentially Stretching Surface
,”
Chem. Eng. Commun.
,
200
(
2
), pp.
253
268
.
12.
Choi
,
S. U. S.
, and Eastman, J. A.,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,” ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, Nov. 12–17, pp. 99–105.
13.
Pang
,
C.
,
Lee
,
J. W.
, and
Kang
,
Y. T.
,
2015
, “
Review on Combined Heat and Mass Transfer Characteristics in Nanofluids
,”
Int. J. Therm. Sci.
,
87
, pp.
49
67
.
14.
Sarkar
,
J.
,
Ghosh
,
P.
, and
Adil
,
A.
,
2015
, “
A Review on Hybrid Nanofluids: Recent Research, Development and Applications
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
164
177
.
15.
Bahiraei
,
M.
, and
Hangi
,
M.
,
2015
, “
Flow and Heat Transfer Characteristics of Magnetic Nanofluids: A Review
,”
J. Magn. Mater.
,
374
, pp.
125
138
.
16.
Bhattacharyya
,
K.
, and
Vajravelu
,
K.
,
2012
, “
Stagnation-Point Flow and Heat Transfer Over an Exponentially Shrinking Sheet
,”
Commun. Nonlinear. Sci. Numer. Simul.
,
17
(
7
), pp.
2728
2734
.
17.
Bachok
,
N.
,
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
,
2010
, “
Flow and Heat Transfer at a General Three-Dimensional Stagnation Point in a Nanofluid
,”
Physica B
,
405
(
24
), pp.
4914
4918
.
18.
Nadeem
,
S.
, and
Lee
,
C. H.
,
2012
, “
Boundary Layer Flow of Nanofluid Over an Exponentially Stretching Surface
,”
Nanoscale Res. Lett.
,
7
, p.
94
.
19.
Nadeem
,
S.
,
Haq
,
R. U.
, and
Khan
,
Z. H.
,
2014
, “
Heat Transfer Analysis of Water-Based Nanofluid Over an Exponentially Stretching Sheet
,”
Alexandria Eng. J.
,
53
(
1
), pp.
219
224
.
20.
Pal
,
D.
,
Mandal
,
G.
, and
Vajravelu
,
K.
,
2014
, “
Flow and Heat Transfer of Nanofluids at a Stagnation Point Flow Over a Stretching/Shrinking Surface in a Porous Medium With Thermal Radiation
,”
Appl. Math. Comput.
,
238
, pp.
208
224
.
21.
Hsiao
,
K.-L.
,
2014
, “
Nanofluid Flow With Multimedia Physical Features for Conjugate Mixed Convection and Radiation
,”
Comput. Fluids
,
104
, pp.
1
8
.
22.
Noghrehabadi
,
A.
,
Izadpanahi
,
E.
, and
Ghalambaz
,
M.
,
2014
, “
Analyze of Fluid Flow and Heat Transfer of Nanofluids Over a Stretching Sheet Near the Extrusion Slit
,”
Comput. Fluids
,
100
, pp.
227
236
.
23.
Nadeem
,
S.
, and
Hussain
,
S. T.
,
2014
, “
Flow and Heat Transfer Analysis of Williamson Nanofluid
,”
Appl. Nanosci.
,
4
(
8
), pp.
1005
1012
.
24.
Ghaffari, A., Javed, T., and
Hsiao
,
K.-L.
,
2016
, “
Heat Transport Analysis of Unsteady Oblique Stagnation Point Flow of Elastic-Viscous Fluid Due to Sinusoidal Wall Temperature Over an Oscillating-Stretching Surface: A Numerical Approach
,”
J. Mol. Liq.
,
219
, pp.
748
755
.
25.
Hsiao
,
K. L.
,
2016
, “
Stagnation Electrical MHD Nanofluid Mixed Convection With Slip Boundary on a Stretching Sheet
,”
Appl. Therm. Eng.
,
98
, pp.
850
861
.
26.
Ur Rehman
,
F.
,
Nadeem
,
S.
, and
Haq
,
R. U.
,
2017
, “
Heat Transfer Analysis for Three-Dimensional Stagnation-Point Flow Over an Exponentially Stretching Surface
,”
Chin. J. Phys.
,
55
(
4
), pp.
1552
1560
.
27.
Tiwari
,
R. K.
, and
Das
,
M. K.
,
2007
, “
Heat Transfer Augmentation in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
2002
2018
.
28.
Abu-Nada
,
E.
,
2008
, “
Application of Nanofluids for Heat Transfer Enhancement of Separated Flows Encountered in a Backward Facing Step
,”
Int. J. Heat Fluid Flow
,
29
(
1
), p.
242
.
29.
Abu-Nada
,
E.
, and
Oztop
,
H. F.
,
2009
, “
Effects of Inclination Angle on Natural Convection in Enclosures Filled With Cu-Water Nanofluid
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
669
678
.
30.
Talebi
,
F.
,
Houshang
,
A.
, and
Shahi
,
M.
,
2010
, “
Numerical Study of Mixed Convection Flows in a Square Lid-Driven Cavity Utilizing Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
37
(
1
), pp.
79
90
.
31.
Brikman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
, pp.
571
581
.
32.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
151
155
.
33.
Li
,
Q.
, and
Xuan
,
Y.
,
2000
, “
Experimental Investigation on Transport Properties of Nanofluids
,”
International Symposium on Heat Transfer
, Beijing, China, pp.
757
762
.https://www.tib.eu/en/search/id/BLCP%3ACN042077963/Experimental-investigation-on-transport-properties/
34.
Liao
,
S. J.
,
1995
, “
An Approximate Solution Technique Not Depending on Small Parameters: A Special Example
,”
Int. J. Non-Linear Mech.
,
30
(
3
), pp.
371
380
.
35.
Liao
,
S. J.
,
1998
, “
Homotopy Analysis Method: A New Analytic Method for Nonlinear Problems
,”
Appl. Math. Mech.
,
19
(
10
), pp.
957
962
.
36.
Liu
,
C. S.
,
2010
, “
The Essence of the Homotopy Analysis Method
,”
Appl. Math. Comp.
,
216
(4), pp.
1299
1303
.
37.
Liao
,
S. J.
,
2004
,
Beyond Perturbation: Introduction to the Homotopy Analysis Method
,
CRC Press
, Boca Raton, FL.
38.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
.
You do not currently have access to this content.