In nuclear packed pebble beds, it is a fundamental task to model effective thermal conductivity (ETC) of thermal radiation. Based on the effective heat transfer cells of structured packing, a short-range radiation model (SRM) and a subcell radiation model (SCM) are applied to obtain analytical results of ETC. It is shown that the SRM of present effective heat transfer cells are in good agreement with the numerical simulations of random packing and it is only slightly higher than empirical correlations when temperature exceeds 1200 °C. In order to develop a generic theoretical approach of modeling ETC, the subcell radiation model is presented and in good agreement with Kunii–Smith correlation, especially at very high temperature ranges (over 1500 °C). Based on SCM, one-dimensional (1D) radial heat transfer model is applied in the analysis of the HTTU experiments. The results of ETC and radial temperature distribution are in good agreement with the experimental data.

References

1.
Zhang
,
Z.
,
Wu
,
Z.
,
Wang
,
D.
,
Xu
,
Y.
,
Sun
,
Y.
,
Li
,
F.
, and
Dong
,
Y.
,
2009
, “
Current Status and Technical Description of Chinese 2× 250 MWth HTR-PM Demonstration Plant
,”
Nucl. Eng. Des.
,
239
(7), pp.
1212
1219
.
2.
Ren
,
C.
,
Yang
,
X.
,
Jia
,
H.
,
Jiang
,
Y.
, and
Xiong
,
W.
,
2017
, “
Theoretical Analysis of Effective Thermal Conductivity for the Chinese HTR-PM Heat Transfer Test Facility
,”
Appl. Sci.
,
7
(1), p.
76
.
3.
Niessen
,
H.
, and
Ball
,
S.
,
2000
, “
Heat Transport and Afterheat Removal for Gas Cooled Reactors Under Accident Conditions
,” International Atomic Energy Agency, Vienna, Austria, Report No.
IAEA-TECDOC-1163
.http://www-pub.iaea.org/books/IAEABooks/5994/Heat-Transport-and-Afterheat-Removal-for-Gas-Cooled-Reactors-under-Accident-Conditions
4.
Rousseau
,
P. G.
,
du Toit
,
C. G.
,
van Antwerpen
,
W.
, and
van Antwerpen
,
H. J.
,
2014
, “
Separate Effects Tests to Determine the Effective Thermal Conductivity in the PBMR HTTU Test Facility
,”
Nucl. Eng. Des.
,
271
, pp.
444
458
.
5.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
,
2006
, “
Effective Thermal Conductivity of Rough Spherical Packed Beds
,”
Int. J. Heat Mass Transfer
,
49
(19–20), pp.
3691
3701
.
6.
van Antwerpen
,
W.
,
du Toit
,
C. G.
, and
Rousseau
,
P. G.
,
2010
, “
A Review of Correlations to Model the Packing Structure and Effective Thermal Conductivity in Packed Beds of Mono-Sized Spherical Particles
,”
Nucl. Eng. Des.
,
240
(7), pp.
1803
1818
.
7.
van Antwerpen
,
W.
,
Rousseau
,
P. G.
, and
du Toit
,
C. G.
,
2012
, “
Multi-Sphere Unit Cell Model to Calculate the Effective Thermal Conductivity in Packed Pebble Beds of Mono-Sized Spheres
,”
Nucl. Eng. Des.
,
247
, pp.
183
201
.
8.
Duncan
,
A. B.
,
Peterson
,
G. E.
, and
Fletcher
,
L. S.
,
1989
, “
Effective Thermal Conductivity Within Packed Beds of Spherical Particles
,”
ASME J. Heat Transfer
,
111
(4), pp.
830
836
.
9.
Buonanno
,
G.
,
Carotenuto
,
A.
,
Giovinco
,
G.
, and
Massarotti
,
N.
,
2003
, “
Experimental and Theoretical Modeling of the Effective Thermal Conductivity of Rough Steel Spheroid Packed Beds
,”
ASME J. Heat Transfer
,
125
(4), pp.
693
702
.
10.
Nasr
,
K.
,
Viskanta
,
R.
, and
Ramadhyani
,
S.
,
1994
, “
An Experimental Evaluation of the Effective Thermal-Conductivities of Packed-Beds at High-Temperatures
,”
ASME J. Heat Transfer
,
116
(4), pp.
829
837
.
11.
Kunii
,
D.
, and
Smith
,
J. M.
,
1960
, “
Heat Transfer Characteristics of Porous Rocks
,”
AIChE J.
,
6
(1), pp.
71
78
.
12.
Zhou
,
J. H.
,
Yu
,
A. B.
, and
Zhang
,
Y. W.
,
2007
, “
A Boundary Element Method for Evaluation of the Effective Thermal Conductivity of Packed Beds
,”
ASME J. Heat Transfer
,
129
(3), pp.
363
371
.
13.
Asakuma
,
Y.
,
Kanazawa
,
Y.
, and
Yamamoto
,
T.
,
2014
, “
Thermal Radiation Analysis of Packed Bed by a Homogenization Method
,”
Int. J. Heat Mass Transfer
,
73
, pp.
97
102
.
14.
Cheng
,
G. J.
, and
Yu
,
A. B.
,
2013
, “
Particle Scale Evaluation of the Effective Thermal Conductivity From the Structure of a Packed Bed: Radiation Heat Transfer
,”
Ind. Eng. Chem. Res.
,
52
(34), pp.
12202
12211
.
15.
Wu
,
H.
,
Gui
,
N.
,
Yang
,
X. T.
,
Tu
,
J. Y.
, and
Jiang
,
S. Y.
,
2016
, “
Effect of Scale on the Modeling of Radiation Heat Transfer in Packed Pebble Beds
,”
Int. J. Heat Mass Transfer
,
101
, pp.
562
569
.
16.
Wu
,
H.
,
Gui
,
N.
,
Yang
,
X. T.
,
Tu
,
J. Y.
, and
Jiang
,
S. Y.
,
2017
, “
Numerical Simulation of Heat Transfer in Packed Pebble Beds: CFD-DEM Coupled With Particle Thermal Radiation
,”
Int. J. Heat Mass Transfer
,
110
, pp.
393
405
.
17.
Gilbert
,
E. N.
,
1962
, “
Random Subdivisions of Space Into Crystals
,”
Ann. Math. Stat.
,
33
(3), pp.
958
972
.
18.
Moller
,
J.
,
1989
, “
Random Tessellations in Rd
,”
Adv. Appl. Probab.
,
21
, pp.
37
73
.
19.
Lucarini
,
V.
,
2009
, “
Three-Dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes
,”
J. Stat. Phys.
,
134
, pp.
185
206
.
20.
Yang
,
R. Y.
,
Zou
,
R. P.
, and
Yu
,
A. B.
,
2002
, “
Voronoi Tessellation of the Packing of Fine Uniform Spheres
,”
Phys. Rev. E
,
65
(4), p.
041302
.
21.
Singh
,
B.
, and
Kaviany
,
M.
,
1994
, “
Effect of Solid Conductivity on Radiative Heat Transfer in Packed Beds
,”
Int. J. Heat Mass Transfer
,
37
(16), pp.
2579
2583
.
22.
Feingold
,
A.
, and
Gupta
,
K. G.
,
1970
, “
New Analytical Approach to the Evaluation of Configuration Factors in Radiation From Spheres and Infinitely Long Cylinders
,”
ASME J. Heat Transfer
,
92
(1), pp.
69
76
.
23.
Schotte
,
W.
,
1960
, “
Thermal Conductivity of Packed Beds
,”
AIChE J.
,
6
(1), pp.
63
67
.
24.
Walton
,
G. N.
,
2002
,
Calculation of Obstructed View Factors by Adaptive Integration
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
You do not currently have access to this content.