A partial differential–integral equation has been derived to connect vapor condensation and the development of condensate film thickness in both the tangential and axial directions in a horizontal circular condenser tube. A high-order explicit numerical scheme is used to solve the strongly nonlinear equation. A simple strategy is applied to avoid possible large errors from high-order numerical differentiation when the condensate becomes stratified. A set of empirical friction factor and Nusselt number correlations covering both laminar and turbulent film condensation have been incorporated to realistically predict film thickness variation and concurrently allow for the predictions of local heat transfer coefficients. The predicted heat-transfer coefficients of film condensation for refrigerant R134a and water vapor in horizontal circular mini- and macrotubes, respectively, have been compared with the results from experiments and the results from the simulations of film condensation using computational fluid dynamics (CFD), and very good agreements have been found. Some of the predicted film condensations are well into the strong stratification regime, and the results show that, in general, the condensate is close to annular near the inlet of the condenser tube and becomes gradually stratified as the condensate travels further away from the inlet for all the simulated conditions. The results also show that the condensate in the minitubes becomes stratified much earlier than that in the macrotubes.

References

1.
Thome
,
J. R.
,
2004
,
Engineering Databook III
,
Wolverine Tube
, Inc., Decatur, GA.
2.
Cioncolini
,
A.
, and
Thome
,
J. R.
,
2013
, “
Liquid Film Circumferential Asymmetry Prediction in Horizontal Annular Two-Phase Flow
,”
Int. J. Multiphase Flow
,
51
, pp.
44
54
.
3.
Wu
,
T.
, and
Vierow
,
K.
,
2006
, “
Local Heat Transfer Measurements of Steam/Air Mixtures in Horizontal Condenser Tubes
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2491
2500
.
4.
Lauriant
,
J. E.
,
Haratty
,
T. J.
, and
Jepson
,
W. P.
,
1985
, “
Film Thickness Distribution for Gas-Liquid Annular Flow in a Horizontal Pipe
,”
PhysicoChem. Hydrodyn.
,
6
, pp.
179
195
.
5.
Lin
,
T. F.
,
Jones
,
O. C.
,
Lahey
,
R. T.
,
Block
,
R. C.
, and
Murase
,
M.
,
1985
, “
Film Thickness Measurements and Modelling in Horizontal Annular Flows
,”
PhysicoChem. Hydrodyn.
,
6
, pp.
197
206
.
6.
Fukano
,
T.
, and
Ousaka
,
A.
,
1989
, “
Prediction of the Circumferential Distribution of Film Thickness in Horizontal and Near-Horizontal Gas-Liquid Annular Flow
,”
Int. J. Multiphase Flow
,
15
(
3
), pp.
403
419
.
7.
Hurlburt
,
E. T.
, and
Newell
,
T. A.
,
2000
, “
Prediction of the Circumferential Film Thickness Distribution in Horizontal Annular Gas-Liquid Flow
,”
Trans. ASME
,
122
(
2
), pp.
396
402
.
8.
Nusselt
,
W.
,
1916
, “
Die Oberflachenkondensation Des Waserdampfes
,”
Z. Vdl
,
60
, p.
541/546
569/575.
9.
Chiou
,
J. S.
,
Yang
,
S. A.
, and
Chen
,
C. K.
,
1994
, “
Laminar Film Condensation Inside a Horizontal Elliptical Tube
,”
Appl. Math. Modell.
,
18
(
6
), pp.
340
346
.
10.
Zhang
,
H.
,
Fang
,
X.
,
Shang
,
H.
, and
Chen
,
W.
,
2015
, “
Flow Condensation Heat Transfer Correlations in Horizontal Channels
,”
Int. J. Refrig.
,
59
, pp.
102
114
.
11.
Wang
,
H. S.
, and
Rose
,
J. W.
,
2006
, “
Film Condensation in Horizontal Microchannels: Effect of Channel Shape
,”
Int. J. Therm. Sci.
,
45
(
12
), pp.
1205
1212
.
12.
Wang
,
H. S.
, and
Rose
,
J. W.
,
2007
, “
Surface Tension-Affected Laminar Film Condensation Problems
,”
J. Mech. Sci. Technol.
,
21
(
11
), pp.
1760
1774
.
13.
Wang
,
H. S.
, and
Rose
,
J. W.
,
2011
, “
Theory of Heat Transfer During Condensation in Microchannels
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2525
2534
.
14.
Nebuloni
,
S.
, and
Thome
,
J. R.
,
2010
, “
Numerical Modelling of Laminar Annular Film Condensation for Different Channel Shapes
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2615
2627
.
15.
Matkovic
,
M.
,
Cavallini
,
A.
,
Del Col
,
D.
, and
Rossetto
,
L.
,
2009
, “
Experimental Study on Condensation Heat Transfer Inside a Single Circular Minichannel
,”
Int. J. Heat Mass Transfer
,
52
, pp.
2311
2323
.
16.
Bandhauer
,
T. M.
,
Agarwal
,
A.
, and
Garimella
,
S.
,
2006
, “
Measurement and Modeling of Condensation Heat Transfer Coefficients in Circular Microchannels
,”
ASME J. Heat Transfer
,
128
(
10
), pp.
1050
1059
.
17.
Koyama
,
S.
,
Kuwahara
,
K.
,
Nakashita
,
K.
, and
Yamamoto
,
K.
,
2003
, “
An Experimental Study on Condensation of Refrigerant R134a in a Multi-Port Extruded Tube
,”
Int. J. Refrig.
,
24
(
4
), pp.
425
432
.
18.
Del Col
,
D.
,
Bortolin
,
S.
,
Cavallini
,
A.
, and
Matkovic
,
M.
,
2011
, “
Effect of Cross-Sectional Shape During Condensation in a Single Square Minichannel
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3909
3920
.
19.
Quan
,
X.
,
Dong
,
L.
, and
Cheng
,
P.
,
2010
, “
Determination of Annular Condensation Heat Transfer Coefficient of Steam in Microchannels With Trapezoidal Cross Sections
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3670
3676
.
20.
Phan
,
L.
,
Wang
,
X.
, and
Narain
,
A.
,
2006
, “
Effect of Exit Condition, Gravity, and Surface-Tension on Stability and Noise-Sensitivity Issues for Steady Condensing Flows Inside Tubes and Channels
,”
Int. J. Heat Mass Transfer
,
49
(
13–14
), pp.
2058
2076
.
21.
Naik
,
R.
,
Narain
,
A.
, and
Mitra
,
S.
,
2016
, “
Steady and Unsteady Simulations for Annular Internal Condensing Flows—Part I: Algorithm and Its Accuracy
,”
Numer. Heat Transfer, Part B.
,
69
(
6
), pp.
473
494
.
22.
Naik
,
R.
, and
Narain
,
A.
,
2016
, “
Steady and Unsteady Simulations for Annular Internal Condensing Flows—Part II: Instability and Flow Regime Transitions
,”
Numer. Heat Transfer, Part B.
,
69
(
6
), pp.
495
510
.
23.
Da Riva
,
E.
,
Del Col
,
D.
,
Garimella
,
S. V.
, and
Cavallini
,
A.
,
2012
, “
The Importance of Turbulence During Condensation in Horizontal Circular Minichannel
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3470
3481
.
24.
Yin
,
Z. Y.
,
Guo
,
Y.
,
Sunden
,
B.
,
Wang
,
Q.
, and
Zeng
,
M.
,
2015
, “
Numerical Simulation of Laminar Film Condensation Ina Horizontal Minitube With and Without Non-Condensable Gas by the VOF Method
,”
Numer. Heat Transfer, Part A
,
68
(
9
), pp.
958
977
.
25.
Da Riva
,
E.
, and
Del Col
,
D.
,
2011
, “
Effect of Gravity During Condensation of R134a in a Circular Minichannel
,”
Microgravity Sci. Technol.
,
23
(
S1
), pp.
87
97
.
26.
Ren
,
B.
,
Zhang
,
L.
,
Xu
,
HM.
,
Cao
,
J.
, and
Tao
,
Z.
,
2014
, “
Experimental Study on Condensation of Steam/Air Mixture in a Horizontal Tube
,”
Exp. Therm. Fluid Sci.
,
58
, pp.
145
155
.
27.
Batchelor
,
G. K.
,
1999
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
, Melbourne, Australia.
28.
Jaster
,
H.
, and
Kosky
,
P. G.
,
1976
, “
Condensation Heat Transfer in a Mixed Flow Regime
,”
Int. J. Heat Mass Transfer
,
19
(
1
), pp.
95
99
.
29.
Schubring
,
D.
, and
Shedd
,
T. A.
,
2009
, “
Critical Friction Factor Modelling of Horizontal Two-Phase Flow in a Horizontal Annular Base Film Thickness
,”
Int. J. Multiphase Flow
,
35
(
4
), pp.
389
397
.
30.
Hurlburt
,
E. T.
, and
Newell
,
T. A.
,
2000
, “
Prediction of the Circumferential Film Thickness Distribution in Horizontal Annular Gas-Liquid Flow
,” Air Conditioning and Refrigeration Center, University of Illinois, Urbana, IL, No. ACRCTR-111.
31.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
1999
,
Numerical Recipes
,
Cambridge University Press
, Victoria, Australia.
32.
White
,
F.
,
2003
,
Fluid Mechanics
, 5th ed.,
McGraw-Hill Higher Education
, New York.
33.
von Bockh
,
P.
, and
Wetzel
,
T.
,
2012
,
Heat Transfer: Basic and Practice
,
Springer-Verlag
,
Berlin
.
34.
Butterworth
,
D.
,
1983
, “
Film Condensation of Pure Vapor
,”
Heat Transfer Design Handbook
, Vol.
2
,
E. U.
Schlunder
, ed.,
Hemisphere Publishing Corp
,
New York
.
35.
Chen
,
S. L.
,
Gerner
,
F. M.
, and
Tien
,
C. L.
,
1987
, “
General Film Condensation Correlations
,”
Exp. Heat Transfer
,
1
(
2
), pp.
93
107
.
36.
Li
,
J. D.
,
2013
, “
CFD Simulation of Water Vapour Condensation in the Presence of Non-Condensable Gas in Vertical Cylindrical Condensers
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
708
721
.
37.
Cao
,
H.
, and
Li
,
J. D.
,
2017
, “
Computational Fluid Dynamics Simulations of Convective Pure Vapor Condensation Inside Vertical Cylindrical Condensers
,”
ASME J. Heat Transfer
,
139
(
6
), p.
061503
.
38.
Rohsenow
,
W. M.
,
1956
, “
Heat Transfer and Temperature Distribution in Laminar Film Condensation
,”
Trans. ASME
,
78
, pp.
1645
1648
.
39.
Suliman
,
R.
,
Liebenberg
,
L.
, and
Meyer
,
J. P.
,
2009
, “
Improved Flow Pattern Map for Accurate Prediction of the Heat Transfer Coefficients During Condensation of R-134a in Smooth Horizontal Tubes and Within the Low-Mass Flux Range
,”
Int. J. Heat Mass Transfer
,
52
(
25–26
), pp.
5701
5711
.
You do not currently have access to this content.