An entropy generation analysis of steady boundary layer flow of viscous fluid with variable properties over an exponentially stretching sheet is presented. The basic nonlinear partial differential equations that govern the flow are reduced to ordinary differential equations by using appropriate transformations. Numerical solutions are obtained by using shooting technique along with Runge–Kutta method. Expressions for the dimensionless volumetric entropy generation rate (NG) and Bejan number are also obtained. The effects of different dimensionless emerging parameters on entropy generation number (NG) and Bejan number (Be) are investigated graphically in detail.

References

1.
Sakiadis
,
B. C.
,
1961
, “
Boundary-Layer Behaviour on Continuous Solid Surfaces—I: Boundary-Layer Equations for Two-Dimensional and Axisymmetric Flow
,”
Am. Inst. Chem. Eng.
,
7
(
1
), pp.
26
28
.
2.
Erickson
,
L. E.
,
Fan
,
L. T.
, and
Fox
,
V. G.
,
1966
, “
Heat and Mass Transfer on a Moving Continuous Flat Plate With Suction or Injection
,”
Ind. Eng. Chem. Fundam.
,
5
(
1
), pp.
19
25
.
3.
Crane
,
L. J.
,
1970
, “
Flow Past a Stretching Plate
,”
Z. Angew. Math. Phys.
,
21
(
4
), pp.
645
647
.
4.
Carragher
,
P.
, and
Crane
,
L. J.
,
1982
, “
Heat Transfer on a Continuously Stretching Sheet
,”
Z. Angew. Math. Mech.
,
62
(
10
), pp.
564
565
.
5.
Nazar
,
R.
,
Amin
,
N.
, and
Pop
,
I.
,
2004
, “
Unsteady Boundary Layer Flow Due to a Stretching Surface in a Rotating Fluid
,”
Mech. Res. Commun.
,
31
(
1
), pp.
121
128
.
6.
Hsiao
,
K. L.
,
2013
, “
Energy Conversion Conjugate Conduction Convection and Radiation Over Non-Linearly Extrusion Stretching Sheet With Physical Multimedia Effects
,”
Energy
,
59
, pp.
494
502
.
7.
Reddy
,
M. G.
,
Padma
,
P.
, and
Shankar
,
B.
,
2015
, “
Effects of Viscous Dissipation and Heat Source on Unsteady MHD Flow Over a Stretching Sheet
,”
Ain Shams Eng. J.
,
6
(
4
), pp.
1195
1201
.
8.
Makinde
,
O. D.
,
2009
, “
On MHD Boundary-Layer Flow and Mass Transfer Past a Vertical Plate in a Porous Medium With Constant Heat Flux
,”
Int. J. Numer. Methods Heat Fluid Flow
,
19
(3/4), pp.
546
554
.
9.
Ali
,
F. M.
,
Nazar
,
R.
,
Arifin
,
N. M.
, and
Pop
,
I.
,
2014
, “
Mixed Convection Stagnation-Point Flow on Vertical Stretching Sheet With External Magnetic Field
,”
Appl. Math. Mech.
,
35
(
2
), pp.
155
166
.
10.
Khader
,
M. M.
,
Babatin
,
M. M.
,
Eid
,
A.
, and
Megahed
,
A. A.
,
2015
, “
Numerical Study for Simulation the MHD Flow and Heat Transfer Due to Stretching Sheet on Variable Thickness and Thermal Conductivity With Thermal Radiation
,”
Appl. Math.
,
6
(
12
), pp.
2045
2056
.
11.
Magyari
,
E.
, and
Keller
,
B.
,
1999
, “
Heat and Mass Transfer in the Boundary Layers on an Exponentially Stretching Continuous Surface
,”
J. Phys. D: Appl. Phys.
,
32
(
5
), pp.
577
585
.
12.
Partha
,
M. K.
,
Murthy
,
P. V. S. N.
, and
Rajasekhar
,
G. P.
,
2005
, “
Effect of Viscous Dissipation on the Mixed Convection Heat Transfer From an Exponentially Stretching Surface
,”
Heat Mass Transfer
,
41
(
4
), pp.
360
366
.
13.
Sajid
,
M.
, and
Hayat
,
T.
,
2008
, “
Influence of Thermal Radiation on Boundary Layer Flow Due to Exponentially Stretching Sheet
,”
Int. Commun. Heat Mass Transfer
,
35
(
3
), pp.
347
356
.
14.
Bidin
,
B.
, and
Nazar
,
R.
,
2009
, “
Numerical Solution of the Boundary Layer Flow Over an Exponentially Stretching Sheet With Thermal Radiation
,”
Eur. J. Sci. Res.
,
33
(4), pp.
710
717
.
15.
Ishak
,
A.
,
2011
, “
MHD Boundary Layer Flow Due to Exponentially Stretching Sheet With Radiation Effect
,”
Sains Malays.
,
40
(4), pp.
391
395
.
16.
Maboob
,
F.
,
Khan
,
W. A.
, and
Ismail
,
A. I. M.
, 2017, “
MHD Flow Over Exponentially Radiating Stretching Sheet Using Homotopy Analysis Method
,”
J. King Saud Univ. Eng. Sci.
,
29
(1), pp. 68–74.
17.
Sravanthi
,
C. S.
,
2016
, “
Homotopy Analysis Solution of MHD Slip Flow Past an Exponentially Stretching Inclined Sheet With Soret-Dufour Effects
,”
J. Nigerian Math. Soc.
,
35
(
1
), pp.
208
226
.
18.
Bhattacharyya
,
K.
, and
Vajravelu
,
K.
,
2012
, “
Stagnation-Point Flow and Heat Transfer Over an Exponentially Shrinking Sheet
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
7
), pp.
2728
2734
.
19.
Bejan
,
A.
,
1996
,
Entropy Generation Minimization
,
CRC Press
,
Boca Raton, FL
.
20.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
21.
Rashidi
,
M. M.
,
Mohammadi
,
F.
,
Abbasbandy
,
S.
, and
Alhuthali
,
M. S.
,
2015
, “
Entropy Generation Analysis for Stagnation Point Flow in a Porous Medium Over a Permeable Stretching Surface
,”
J. Appl. Fluid Mech.
,
8
(4), pp.
753
765
.
22.
Rashidi
,
M. M.
,
Ali
,
M.
,
Freidoonimehr
,
N.
, and
Nazari
,
F.
,
2013
, “
Parametric Analysis and Optimization of Entropy Generation in Unsteady MHD Flow Over a Stretching Rotating Disk Using Artificial Neural Network and Particle Swarm Optimization Algorithm
,”
Energy
,
55
, pp.
497
510
.
23.
Butt
,
A. S.
, and
Ali
,
A.
,
2015
, “
Investigation of Entropy Generation Effects in Magnetohydrodynamic Three Dimensional Flow and Heat Transfer of Viscous Fluid Over a Stretching Surface
,”
J. Braz. Soc. Mech. Sci. Eng.
,
37
(
1
), pp.
211
219
.
24.
Butt
,
A. S.
,
Ali
,
A.
, and
Mehmood
,
A.
,
2016
, “
Numerical Investigation of Magnetic Field Effects on Entropy Generation in Viscous Flow Over a Stretching Cylinder Embedded in a Porous Medium
,”
Energy
,
99
, pp.
237
249
.
25.
Makinde
,
O. D.
,
2011
, “
Second Law Analysis for Variable Viscosity Hydromagnetic Boundary Layer Flow With Thermal Radiation and Newtonian Heating
,”
Entropy
,
13
(
12
), pp.
1446
1464
.
26.
Lai
,
F. C.
, and
Kulacki
,
F. A.
,
1990
, “
The Effect of Variable Viscosity on Convective Heat Transfer Along a Vertical Surface in a Saturated Porous Medium
,”
Int. J. Heat Mass Transfer
,
33
(5), pp.
1028
1031
.
You do not currently have access to this content.