Thermomagnetic convection of a ferrofluid flow induced by the internal magnetic field around a vertical current-carrying wire was theoretically analyzed and experimentally validated for the first time. The Nusselt number for a heated 50-μm diameter wire in a ferrofluid was measured for different electrical currents and fluid temperatures. The experimental results are in a good agreement with the proposed scaling analysis. We found that increasing the current will increase the Nusselt number nonlinearly and ultimately enhances the heat transfer capability of the induced ferrofluid flow. We observed that the thermomagnetic convection becomes dominant, if large enough currents are applied.

References

1.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
,
2005
, “
Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Phys. Rev. Lett.
,
94
(
2
), p.
025901
.
2.
Vatani
,
A.
,
Woodfield
,
P. L.
, and
Dao
,
D. V.
,
2015
, “
A Survey of Practical Equations for Prediction of Effective Thermal Conductivity of Spherical-Particle Nanofluids
,”
J. Mol. Liq.
,
211
, pp.
712
733
.
3.
Raj
,
K.
, and
Moskowitz
,
R.
,
1990
, “
Commercial Applications of Ferrofluids
,”
J. Magn. Magn. Mater.
,
85
(
1
), pp.
233
245
.
4.
Shima
,
P.
, and
Philip
,
J.
,
2011
, “
Tuning of Thermal Conductivity and Rheology of Nanofluids Using an External Stimulus
,”
J. Phys. Chem. C
,
115
(
41
), pp.
20097
20104
.
5.
Altan
,
C. L.
,
Elkatmis
,
A.
,
Yüksel
,
M.
,
Aslan
,
N.
, and
Bucak
,
S.
,
2011
, “
Enhancement of Thermal Conductivity Upon Application of Magnetic Field to Fe3O4 Nanofluids
,”
J. Appl. Phys.
,
110
(
9
), p.
093917
.
6.
Lajvardi
,
M.
,
Moghimi-Rad
,
J.
,
Hadi
,
I.
,
Gavili
,
A.
,
Isfahani
,
T. D.
,
Zabihi
,
F.
, and
Sabbaghzadeh
,
J.
,
2010
, “
Experimental Investigation for Enhanced Ferrofluid Heat Transfer Under Magnetic Field Effect
,”
J. Magn. Magn. Mater.
,
322
(
21
), pp.
3508
3513
.
7.
Philip
,
J.
,
Shima
,
P.
, and
Raj
,
B.
,
2007
, “
Enhancement of Thermal Conductivity in Magnetite Based Nanofluid Due to Chainlike Structures
,”
Appl. Phys. Lett.
,
91
(
20
), p.
203108
.
8.
Korolev
,
V.
,
Arefyev
,
I.
, and
Blinov
,
A.
,
2008
, “
Heat Capacity of Superfine Oxides of Iron Under Applied Magnetic Fields
,”
J. Therm. Anal. Calorim.
,
92
(
3
), pp.
697
700
.
9.
Azizian
,
R.
,
Doroodchi
,
E.
,
McKrell
,
T.
,
Buongiorno
,
J.
,
Hu
,
L.
, and
Moghtaderi
,
B.
,
2014
, “
Effect of Magnetic Field on Laminar Convective Heat Transfer of Magnetite Nanofluids
,”
Int. J. Heat Mass Transfer
,
68
, pp.
94
109
.
10.
Ghofrani
,
A.
,
Dibaei
,
M.
,
Sima
,
A. H.
, and
Shafii
,
M.
,
2013
, “
Experimental Investigation on Laminar Forced Convection Heat Transfer of Ferrofluids Under an Alternating Magnetic Field
,”
Exp. Therm. Fluid Sci.
,
49
, pp.
193
200
.
11.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2014
, “
Effect of a Rotating Cylinder in Forced Convection of Ferrofluid Over a Backward Facing Step
,”
Int. J. Heat Mass Transfer
,
71
, pp.
142
148
.
12.
Goharkhah
,
M.
, and
Ashjaee
,
M.
,
2014
, “
Effect of an Alternating Nonuniform Magnetic Field on Ferrofluid Flow and Heat Transfer in a Channel
,”
J. Magn. Magn. Mater.
,
362
, pp.
80
89
.
13.
Aminfar
,
H.
,
Mohammadpourfard
,
M.
, and
Zonouzi
,
S. A.
,
2013
, “
Numerical Study of the Ferrofluid Flow and Heat Transfer Through a Rectangular Duct in the Presence of a Non-Uniform Transverse Magnetic Field
,”
J. Magn. Magn. Mater.
,
327
, pp.
31
42
.
14.
Ghasemian
,
M.
,
Ashrafi
,
Z. N.
,
Goharkhah
,
M.
, and
Ashjaee
,
M.
,
2015
, “
Heat Transfer Characteristics of Fe3O4 Ferrofluid Flowing in a Mini Channel Under Constant and Alternating Magnetic Fields
,”
J. Magn. Magn. Mater.
,
381
, pp.
158
167
.
15.
Mukhopadhyay
,
A.
,
Ganguly
,
R.
,
Sen
,
S.
, and
Puri
,
I. K.
,
2005
, “
A Scaling Analysis to Characterize Thermomagnetic Convection
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3485
3492
.
16.
Rahman
,
H.
, and
Suslov
,
S. A.
,
2015
, “
Thermomagnetic Convection in a Layer of Ferrofluid Placed in a Uniform Oblique External Magnetic Field
,”
J. Fluid Mech.
,
764
, pp.
316
348
.
17.
Finlayson
,
B.
,
1970
, “
Convective Instability of Ferromagnetic Fluids
,”
J. Fluid Mech.
,
40
(
4
), pp.
753
767
.
18.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
19.
Le Fevre
,
E.
, and
Ede
,
A.
,
1956
, “
Laminar Free Convection From the Outer Surface of a Vertical Circular Cylinder
,”
Nineth International Congress Applied Mechanics
, Brussels, Belgium, Sept. 5–13, pp.
175
183
.
20.
Vatani
,
A.
,
Woodfield
,
P. L.
, and
Dao
,
D. V.
,
2015
, “
A Miniaturized Transient Hot-Wire Device for Measuring Thermal Conductivity of Non-Conductive Fluids
,”
Microsyst. Technol.
,
22
(10), pp.
2463
2466
.
21.
Corcione
,
M.
,
2011
, “
Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids
,”
Energy Convers. Manage.
,
52
(
1
), pp.
789
793
.
22.
Healy
,
J.
,
De Groot
,
J.
, and
Kestin
,
J.
,
1976
, “
The Theory of the Transient Hot-Wire Method for Measuring Thermal Conductivity
,”
Physica B + C
,
82
(
2
), pp.
392
408
.
23.
Nagasaka
,
Y.
, and
Nagashima
,
A.
,
1981
, “
Absolute Measurement of the Thermal Conductivity of Electrically Conducting Liquids by the Transient Hot-Wire Method
,”
J. Phys. E: Sci. Instrum.
,
14
(
12
), pp.
1435
1440
.
24.
Rusconi
,
R.
,
Williams
,
W. C.
,
Buongiorno
,
J.
,
Piazza
,
R.
, and
Hu
,
L.-W.
,
2007
, “
Numerical Analysis of Convective Instabilities in a Transient Short-Hot-Wire Setup for Measurement of Liquid Thermal Conductivity
,”
Int. J. Thermophys.
,
28
(
4
), pp.
1131
1146
.
25.
Ro
,
S. T.
,
Lee
,
J. H.
, and
Yoo
,
J. Y.
,
1990
, “
Onset of Natural Convection Effect in Transient Hot-Wire System
,”
Thermal Conductivity 21
,
C. J.
Cremers
and
H. A.
Fine
, ed.,
Plenum Press
, Berlin, pp.
151
163
.
26.
Woodfield
,
P. L.
,
Fukai
,
J.
,
Fujii
,
M.
,
Takata
,
Y.
, and
Shinzato
,
K.
,
2008
, “
Numerical Simulation of Natural Convection in a Transient Short-Hot-Wire Thermal Conductivity Cell
,”
Netsu Bussei
,
22
(
4
), pp.
217
222
.
27.
Zhang
,
X.
,
Fujiwara
,
S.
,
Qi
,
Z.
, and
Fujii
,
M.
,
1999
, “
Natural Convection Effect on Transient Short-Hot-Wire Method
,”
JASMA: J. Jpn. Soc. Microgravity Appl.
,
16
(
2
), pp.
129
135
.
You do not currently have access to this content.