In this work, convection heat transfer for combined electro-osmotic and pressure driven flow of power-law fluid through a microtube has been analyzed. Typical results for velocity and temperature distributions, friction coefficient, and Nusselt number are illustrated for various values of key parameters such as flow behavior index, length scale ratio (ratio of Debye length to tube radius), dimensionless pressure gradient, and dimensionless Joule heating parameter. The results reveal that friction coefficient decreases with increasing dimensionless pressure gradient, and classical Poiseuille solutions can be retrieved as the dimensionless pressure gradient approaches to infinite. To increase the length scale ratio has the effect to reduce Nusselt number, while the influence of this ratio on Nusselt number diminishes as the pressure gradient increases. With the same magnitude of dimensionless Joule heating parameter, Nusselt number can be increased by increasing both the flow behavior index and dimensionless pressure gradient for surface cooling, while the opposite behavior is observed for surface heating. Also, singularities occurs in the Nusselt number variations for surface cooling as the ratio of Joule heating to wall heat flux is sufficiently large with negative sign.

References

1.
Hunter
,
R. J.
,
1981
,
Zeta Potential in Colloid Science
,
Academic Press
,
New York
.
2.
Probstein
,
R. F.
,
1994
,
Physicochemical Hydrodynamics: An Introduction
, 2nd ed.,
Wiley
,
New York
.
3.
Zhao
,
C.
, and
Yang
,
C.
,
2013
, “
Electrokinetics of Non-Newtonian Fluids: A Review
,”
Adv. Colloid Interface Sci.
,
201–202
, pp.
94
108
.
4.
Zhao
,
C.
,
Zholkovskij
,
E.
,
Masliyah
,
J. H.
, and
Yang
,
C.
,
2008
, “
Analysis of Electro-Osmotic Flow of Power-Law Fluids in a Slit Microchannel
,”
J. Colloid Interface Sci.
,
326
(
2
), pp.
503
510
.
5.
Bharti
,
R. P.
,
Harvie
,
D. J. E.
, and
Davidson
,
M. R.
,
2009
, “
Electroviscous Effects in Steady Fully Developed Flow of a Power-Law Liquid Through a Cylindrical Microchannel
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
804
811
.
6.
Tang
,
G. H.
,
Li
,
X. F.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2009
, “
Electro-Osmotic Flow of Non-Newtonian Fluid in Microchannels
,”
J. Non-Newtonian Fluid Mech.
,
157
(
1–2
), pp.
133
137
.
7.
Vasu
,
N.
, and
De
,
S.
,
2010
, “
Electroviscous Effects in Purely Pressure Driven Flow and Stationary Plane Analysis in Electro-Osmotic Flow of Power-Law Fluids in a Slit Microchannel
,”
Int. J. Eng. Sci.
,
48
(
11
), pp.
1641
1658
.
8.
Bandopadhyay
,
A.
, and
Chakraborty
,
S.
,
2011
, “
Steric-Effect Induced Alterations in Streaming Potential and Energy Transfer Efficiency of Non-Newtonian Fluids in Narrow Confinements
,”
Langmuir
,
27
(
19
), pp.
12243
12252
.
9.
Hadigol
,
M.
,
Nosrati
,
R.
, and
Raisee
,
M.
,
2011
, “
Numerical Analysis of Mixed Electro-Osmotic/Pressure Driven Flow of Power-Law Fluids in Microchannels and Micropumps
,”
Colloids Surf. A
,
374
(
1–3
), pp.
142
153
.
10.
Deng
,
S. Y.
,
Jian
,
Y. J.
,
Bi
,
Y. H.
,
Chang
,
L.
,
Wang
,
H. J.
, and
Liu
,
Q. S.
,
2012
, “
Unsteady Electro-Osmotic Flow of Power-Law Fluid in a Rectangular Microchannel
,”
Mech. Res. Commun.
,
39
(
1
), pp.
9
14
.
11.
Chang
,
Y.-J.
,
Yang
,
P.-W.
, and
Huang
,
H.-F.
,
2013
, “
Finite Double Layer and Non-Newtonian Power-Law Effects on Electrokinetic Diffusioosmotic Flows in Parallel Plate Microchannels
,”
J. Non-Newtonian Fluid Mech.
,
194
, pp.
32
41
.
12.
Zhu
,
Q.
,
Deng
,
S.
, and
Chen
,
Y.
,
2014
, “
Periodical Pressure-Driven Electrokinetic Flow of Power-Law Fluids Through a Rectangular Microchannel
,”
J. Non-Newtonian Fluid Mech.
,
203
, pp.
38
50
.
13.
Chen
,
S.
,
He
,
X.
,
Bertola
,
V.
, and
Wang
,
M.
,
2014
, “
Electro-Osmosis of Non-Newtonian Fluids in Porous Media Using Lattice Poisson–Boltzmann Method
,”
J. Colloid Interface Sci.
,
436
, pp.
186
193
.
14.
Maynes
,
D.
, and
Webb
,
B. W.
,
2003
, “
Fully Developed Electro-Osmotic Heat Transfer in Microchannels
,”
Int. J. Heat Mass Tranfer
,
46
(
8
), pp.
1359
1369
.
15.
Liechty
,
B. C.
,
Webb
,
B. W.
, and
Maynes
,
R. D.
,
2005
, “
Convective Heat Transfer Characteristics of Electro-Osmotically Generated Flow in Microtubes at High Wall Potential
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2360
2371
.
16.
Chen
,
C.-H.
,
2009
, “
Thermal Transport Characteristics of Mixed Pressure and Electro-Osmotically Driven Flow in Micro- and Nanochannels With Joule Heating
,”
ASME J. Heat Transfer
,
131
(
2
), p.
022401
.
17.
Sadeghi
,
A.
, and
Saidi
,
M. H.
,
2010
, “
Viscous Dissipation Effects on Thermal Transport Characteristics of Combined Pressure and Electro-Osmotically Driven Flow in Microchannels
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3782
3791
.
18.
Dey
,
R.
,
Chakraborty
,
D.
, and
Chakraborty
,
S.
,
2011
, “
Analytical Solution for Thermally Fully Developed Combined Electro-Osmotic and Pressure-Driven Flows in Narrow Confinements With Thick Electrical Double Layers
,”
ASME J. Heat Transfer
,
133
(
2
), p.
024503
.
19.
Chen
,
C.-H.
,
Hwang
,
S.-J.
, and
Hwang
,
Y.-L.
,
2013
, “
Electro-Osmotic Flow and Heat Transfer in Microchannels: A Closed Form Solution
,”
Appl. Mech. Mater.
,
319
, pp.
462
467
.
20.
Chen
,
C.-H.
,
2011
, “
Electro-Osmotic Heat Transfer of Non-Newtonian Fluid Flow in Microchannels
,”
ASME J. Heat Transfer
,
133
(
7
), p.
071705
.
21.
Chen
,
C.-H.
,
2012
, “
Fully-Developed Thermal Transport in Combined Electro-Osmotic and Pressure Driven Flow of Power-Law Fluids in Microchannels
,”
Int. J. Heat Mass Transfer
,
55
, pp.
2173
2183
.
22.
Chen
,
C.-H.
,
Hwang
,
Y.-L.
, and
Hwang
,
S.-J.
,
2013
, “
Non-Newtonian Fluid Flow and Heat Transfer in Microchannels
,”
Appl. Mech. Mater.
,
275–277
, pp.
275
277
.
23.
Babaie
,
A.
,
Saidi
,
M. H.
, and
Sadeghi
,
A.
,
2012
, “
Heat Transfer Characteristics of Mixed Electro-Osmotic and Pressure Driven Flow of Power-Law Fluids in a Slit Microchannel
,”
Int. J. Therm. Sci.
,
53
, pp.
71
79
.
24.
Moghadam
,
A. J.
,
2013
, “
Electrokinetic-Driven Flow and Heat Transfer of a Non-Newtonian Fluid in a Circular Microchannel
,”
ASME J. Heat Transfer
,
135
(
2
), p.
021705
.
25.
Moghadam
,
A. J.
,
2016
, “
Exact Solution of Electroviscous Flow and Heat Transfer in a Semi-Annular Microcapillary
,”
ASME J. Heat Transfer
,
138
(
1
), p.
011702
.
26.
Maynes
,
D.
, and
Webb
,
B. W.
,
2004
, “
The Effect of Viscous Dissipation in Thermally Fully-Developed Electro-Osmotic Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
47
(
5
), pp.
987
999
.
27.
Maynes
,
D.
, and
Webb
,
B. W.
,
2003
, “
Fully-Developed Thermal Transport in Combined Pressure and Electro-Osmotically Driven Flow in Microchannels
,”
ASME J. Heat Transfer
,
125
(
5
), pp.
889
895
.
28.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
,
2008
,
Non-Newtonian Flow and Applied Rheology
, 2nd ed.,
Butterworth-Heinemann
,
Oxford UK
.
29.
Burmeister
,
L. C.
,
1983
,
Convective Heat Transfer
,
Wiley
,
New York
.
You do not currently have access to this content.