This paper describes the application of reduced-order modeling techniques in the simulation of conjugate heat transfer processes. In a reduced-order model (ROM), the dominate features of a system are represented using a limited number of orthonormal basis vectors, which are extracted from a database containing descriptions of the system. Interpolating methods are then used to calculate expansion coefficients that allow representation of the system as linear combinations of the basis vectors. Evidence of the accuracy and computational savings achieved using the reduced-order modeling technique is presented in order to demonstrate its benefits in simulating conjugate heat transfer processes.

References

1.
Cullen
,
A. C.
, and
Frey
,
H.
,
1999
,
Probabilistic Techniques in Exposure Assessment: A Handbook for Dealing With Variability and Uncertainty in Models and Inputs
,
Plenum Press
,
New York
.
2.
Blanc
,
T.
,
2014
, “
Analysis and Compression of Large CFD Data Sets Using Proper Orthogonal Decomposition
,”
M.S. thesis
, Brigham Young University, Provo, UT.
3.
Pearson
,
K.
,
1901
, “
On Lines Planes of Closest Fit to System of Points in Space
,”
London Edinburgh Dublin Philos. Mag. J. Sci.
,
2
(
11
), pp.
559
572
.
4.
Hoteling
,
H.
,
1933
, “
Analysis of Complex Statistical Variables Into Principal Components
,”
J. Educ. Psychol.
,
24
(
6
), pp.
417
441
.
5.
Atwell
,
J. A.
, and
King
,
B. B.
,
2001
, “
Proper Orthogonal Decomposition for Reduced Basis Feedback Controllers for Parabolic Equations
,”
Math. Comput. Model.
,
33
(1–3), pp.
1
19
.
6.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.
7.
Ding
,
P.
,
Wu
,
X.-H.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2008
, “
A Fast and Efficient Method for Predicting Fluid Flow and Heat
,”
ASME J. Heat Transfer
,
130
(
3
), p.
032502
.
8.
Ostrowski
,
Z.
,
Bialecki
,
R. A.
, and
Kassab
,
A. J.
,
2005
, “
Estimation of Constant Thermal Conductivity by Use of Proper Orthogonal Decomposition
,”
Comput. Mech.
,
37
(
1
), pp.
52
59
.
10.
Larson
,
R. S.
, and
Jones
,
M. R.
,
2008
, “
Reduced-Order Modeling of Time-Dependent Reflectance Profiles From Purely Scattering Media
,”
J. Quant. Spectrosc. Radiat. Transfer
,
109
(
2
), pp.
201
209
.
11.
Blanc
,
T.
,
Jones
,
M.
,
Gorrell
,
S.
, and
Duque
,
E.
,
2013
, “
Reduced Order Modeling and Compression of Data Produced by Simulations of Transient and Periodic Heat Transfer Processes
,”
ASME
Paper No. HT2013-17064.
12.
Holmes
,
P.
,
Lumley
,
J. L.
,
Berkooz
,
G.
, and
Rowley
,
C. W.
,
2012
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
, 2nd ed.,
Cambridge University Press
, pp.
68
100
.
13.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures, Parts I–III
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
590
.
14.
Strang
,
G.
,
2006
,
Linear Algebra and Its Application
,
Addison-Wesley
,
Reading MA
, pp.
432
433
.
You do not currently have access to this content.